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Abstract Lifetime reproductive output (LRO) determines
per-generation growth rates, establishes criteria for popula-
tion growth or decline, and is an important component of
fitness. Empirical measurements of LRO reveal high vari-
ance among individuals. This variance may result from gen-
uine heterogeneity in individual properties, or from individ-
ual stochasticity, the outcome of probabilistic demographic
events during the life cycle. To evaluate the extent of indi-
vidual stochasticity requires the calculation of the statistics
of LRO from a demographic model. Mean LRO is routinely
calculated (as the net reproductive rate), but the calculation
of variances has only recently received attention. Here, we
present a complete, exact, analytical, closed-form solution
for all the moments of LRO, for age- and stage-classified
populations. Previous studies have relied on simulation,
iterative solutions, or closed-form analytical solutions that
capture only part of the sources of variance. We also present
the sensitivity and elasticity of all of the statistics of LRO to
parameters defining survival, stage transitions, and (st)age-
specific fertility. Selection can operate on variance in LRO
only if the variance results from genetic heterogeneity. The
potential opportunity for selection is quantified by Crow’s
index I, the ratio of the variance to the square of the
mean. But variance due to individual stochasticity is only
an apparent opportunity for selection. In a comparison of a
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range of age-classified models for human populations, we
find that proportional increases in mortality have very small
effects on the mean and variance of LRO, but large positive
effects on I. Proportional increases in fertility increase both
the mean and variance of LRO, but reduce I. For a size-
classified tree population, the elasticity of both mean and
variance of LRO to stage-specific mortality are negative; the
elasticities to stage-specific fertility are positive.
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selection · Inter-individual variance

Introduction

Like all men in Babylon, I have been proconsul; like
all, I have been a slave. I have known omnipotence,
ignominy, imprisonment . . . I owe this almost atro-
cious variety to an institution which other republics
know nothing about, and which operates among them
imperfectly and in secret: the lottery.

Jorge Luis Borges, The Lottery in Babylon

Lifetime reproductive output (LRO) is, as the name
implies, the total production of offspring over the lifetime
of an individual1 and is one of the most important char-
acteristics of an individual life history. The expectation of
LRO, calculated in terms of female offspring per female, is
the net reproductive rate R0. In ecology, the critical value

1This is a slightly more general concept than lifetime reproductive
success (Clutton-Brock 1988) because it can accommodate many dif-
ferent operational definitions of reproduction, as are often encountered
in ecological and demographic analysis.
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R0 = 1 defines the boundary separating population growth
and persistence from population decline and extinction.
In epidemiology, R0 for a pathogen determines whether a
disease will or will not cause an outbreak. In evolution-
ary biology, R0 is a critical component of fitness (some-
times considered to be fitness, although that is sometimes
problematic).

Genetic variance in LRO is considered to be the raw
material on which natural selection operates. Crow (1958)
introduced an index, which now bears his name, of the
“opportunity for selection.” If X denotes some measure of
fitness, then the opportunity for selection is

I = V (X)

E(X)2
, (1)

also known as the standardized variance. It gives the maxi-
mum rate of evolutionary change that could be produced by
selection if all the variance inX were genetic. To rigorously
investigate opportunities for selection would require more
explicit population genetic models. Even so, the opportu-
nity for selection is widely used in studies of both animal
and human populations (e.g., Jones 2009; Brown et al. 2009;
Robbins et al. 2011; Moorad et al. 2011; Courtiol et al.
2012).

Empirical studies of individual LRO routinely find large
variance and usually a positive skew. Most individuals
produce few, or no, offspring, while a few rare individu-
als produce many offspring (Clutton-Brock 1988; Newton
1989). These differences in LRO have two possible sources.
One is heterogeneity—differences in the properties of
individuals—including genetic heterogeneity, physiologi-
cal differences, phenotypic plasticity, and environmental
heterogeneity.

However, the differences may also be due to individ-
ual stochasticity (Caswell 2009, 2011, 2014; van Daalen
and Caswell 2015). Individual stochasticity refers to differ-
ences among individuals due to the accumulation of random
outcomes of the stochastic processes of mortality, growth,
development, breeding, etc. Individual stochasticity would
lead to variance among individuals even if they were totally
identical and experienced exactly the same demographic
rates.2 Depending on the outcome under consideration, vari-
ance due to individual stochasticity can be as great as
or even exceed that caused by unobserved heterogeneity
(Tuljapurkar et al. 2009; Steiner et al. 2010; Caswell 2011,
2014; Hartemink et al. 2017). Thus, before invoking hetero-
geneity as the explanation for differences among individuals,

2Tuljapurkar et al. (2009) independently and at the same time intro-
duced the term “dynamic heterogeneity” to refer to the same random
variation . We continue to use individual stochasticity because it more
accurately describes the process creating the inter-individual variance
and allows us to distinguish heterogeneity that is static from that which
changes over the life of an individual.

it is important to calculate the variation due to stochastic-
ity as a kind of “neutral model” for variation (Steiner and
Tuljapurkar 2012).

Individual stochasticity itself has two components. Con-
sider an individual at some stage in its life cycle (say, at
birth). The growth, development, and eventual death of this
individual define a path through the stages of the life cycle.
The pathways of two or more identical individuals, subject
to the same rates at every stage of the life cycle, will differ
randomly among themselves, and this variation among path-
ways is one source of individual stochasticity. At each step
along an individual’s path, it may or may not reproduce. If it
reproduces, the number of its offspring will be drawn from
some probability distribution. This within-pathway stochas-
tic variation in (stage-specific) fertility is the second source
of individual stochasticity.

Our goal is to calculate the variance (and other statis-
tics) of LRO, due to individual stochasticity, from basic
demographic information, just as R0 can be calculated
from age-classified or stage-classified demographic models
(Rhodes 1940; Cushing and Zhou 1994; De Camino-Beck
and Lewis 2007; Cushing and Ackleh 2012). To calculate
the variance in LRO, we need to account for the generally
infinite number of pathways through the life cycle, calcu-
late the probabilities of each path, calculate the distribution
of reproductive output at each stage on each path, and then
integrate those probabilities to calculate the mean, variance,
etc. of LRO.

The calculation of variance in LRO has been approached
in several ways. Early studies used simulation to gener-
ate random trajectories through stages, including stages
defined by reproductive output, to create a sample of lives
from which variance in LRO could be calculated (e.g.,
Tuljapurkar et al. 2009; Steiner et al. 2010). An analytical
solution for all the moments of LROwas provided by Caswell
(2011) and provides the framework for our results here.
That result took the form of an iterative calculation rather
than a closed form expression. Steiner and Tuljapurkar
(2012) presented a closed form analytical solution for all
the moments of one component of LRO, using a moment
generating function approach. They also reported simula-
tions of the complete distribution of LRO and explored
effects of heterogeneity. However, their solution included
only part of the variance in LRO. They assumed the fertil-
ity of each age or stage to be a fixed deterministic quantity,
neglecting the within-pathway component of variance. For
example, the age-specific fertility of a 26-year-old Japanese
woman in 1950 was 0.25. The analysis of Steiner and
Tuljapurkar (2012) assumes that every 26-year-old woman,
without exception, produces one fourth of a baby. In our
framework, every 26-year-old woman, without exception,
produces one baby with a probability of 0.25 and zero
babies with a probability of 0.75 (Caswell 2011). This
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component of variance is biologically realistic and quan-
titively important. For example, analysis of 40 developed
countries during the second demographic transition found
that, as life expectancy increased, the fraction of variance
in LRO due to within-trajectory randomness increased from
∼ 50% to ∼ 99% (Van Daalen and Caswell 2015). We
show further examples and present the methodology for
decomposing variance into these components, below.

All the studies published so far agree in finding that the
variance in LRO due to individual stochasticity can com-
prise a high proportion of the observed variance in LRO,
and that to ignore it is to miss a major source of variation
(e.g., Tuljapurkar et al. 2009; Steiner et al. 2010; Steiner and
Tuljapurkar 2012; Caswell 2011; van Daalen and Caswell
2015).

In this paper, we present exact, closed form, analyti-
cal formulae for all the moments of LRO, extending and
replacing the iterative formulae of Caswell (2011). We
include both the between-trajectory and within-trajectory
components of variance and incorporate variance in stage-
specific fertility either empirically or by a statistical model.
We also present the sensitivity and elasticity analysis of
means, variances, and all moments of LRO due to individ-
ual stochasticity. Our results can be applied to any age- or
stage-classified matrix population model and to constant,
periodic, or stochastic environments.

Our results rely on a mathematical model called a
Markov chain with rewards, which we describe in “Markov
chains with rewards as a model for LRO.” The construction
of a Markov chain with rewards requires demographic infor-
mation on survival, stage transitions, and fertility. Section
“The statistics of LRO” presents the calculation of all the
moments and other descriptive statistics of LRO. Section
“Sensitivity analysis of LRO” presents the sensitivity and
elasticity analysis of LRO. Section “Examples” presents
examples of age-classified and stage-classified populations,
and “Discussion” concludes with a discussion of results
and possible extensions. Proofs and derivations appear in
Appendix A.

Markov chains with rewards as a model for LRO

Notation Matrices are denoted by uppercase boldface let-
ters (e.g., P), and vectors by lowercase boldface letters (e.g.,
ρ). Vectors are column vectors by default; XT is the trans-
pose of X. The vector 1n is a n × 1 vector of ones, In is
the identity matrix of order n, and ei is the ith unit vector,
with a 1 in the ith entry and zeros elsewhere. The matrix
E is a matrix of ones, and Eij is a matrix with a 1 in
the (i, j) entry and zeros elsewhere. The diagonal matrix
with the vector x on the diagonal and zeros elsewhere is
denoted D(x). The symbol ◦ denotes the Hadamard, or

element-by-element product, and ⊗ denotes the Kronecker
product. The vec operator vec X stacks the columns of an
m × n matrix X into an mn × 1 column vector. The vec-
permutation matrix Km,n satisfies vec XT = Km,nvec X.
In cases where it will help understanding, we indicate the
dimension of displayed matrix expressions.

The life cycle as a Markov chain

Our approach uses a mathematical model called a Markov
chain with rewards. These models have a long history in
stochastic process theory (e.g., Howard 1960; Puterman
1994; Sheskin 2010) but have only recently been applied to
study lifetime reproduction (Caswell 2011; Van Daalen and
Caswell 2015).

The individual life cycle is described by a finite-state,
discrete-time, absorbing Markov chain; absorbing states
represent death. The population projection matrix is written

A = U+ F (2)

where U contains the transition probabilities for extant indi-
viduals and F contains stage-specific fertilities. Let τ be the
number of transient (living) states, α the number of absorb-
ing states, and s = τ + α the total number of states. Then
the Markov chain transition matrix, including both transient
and absorbing states, can be written

P
U 0
M I (3)

where the dimensions of the submatrices are noted. The
matrix P is column stochastic. We assume that the spectral
radius of U is strictly less than 1; thus, any individual even-
tually dies with probability 1. The probability of dying while
in each of the transient states is contained in the mortality
matrix M.

Reproductive rewards An individual experiences a
sequence of transitions according to the probabilities in P.
Associated with each transition (including the transition
of remaining in a stage) is a “reward” representing, in our
case, reproductive output. The reproductive reward is a
random variable with a specified set of moments. Rewards
accumulate over the lifetime of the individual; the total
accumulation at the time of death is the LRO. We make
the reasonable assumption that individuals in the absorbing
state stop accumulating rewards.3

3If the Markov chain is ergodic, or if it is absorbing but the absorbing
states continue to collect rewards, then rewards will continue to accu-
mulate forever. Lifetime accumulated rewards in such cases converge
only if a discount factor is imposed, making delayed rewards less valu-
able than immediate rewards. We will present results for ergodic chains
elsewhere.
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The reproductive rewards associated with each transition
are given by a set of matrices Rk , k = 1, 2, . . .. The (i, j)

entry of Rk is the kth moment of the reproductive output
associated with the transition j → i; that is,

Rk =
(
E

[
rkij

] )
. (4)

These matrices Rm can be obtained in several ways, dis-
cussed in detail in Caswell (2011).

Empirical distribution. The moments can be calculated
empirically from data on individual reproduction. Such
data are frequently obtained, but typically only mean
reproductive output is reported. In the absence of this
information, the reward matrices can be modelled by any
probability distribution that is determined by its mean,
including the following.

Bernoulli distribution. When only a single offspring is
produced, mean offspring production equals the proba-
bility of reproducing. The matrices of second and third
moments satisfy

R3 = R2 = R1. (5)

Poisson distribution. When multiple offspring are pro-
duced, the Poisson distribution describes a situation
where every individual has the same chances of produc-
ing those offspring. The moments satisfy

R2 = R1 + (R1 ◦ R1) (6)

R3 = R1 + 3 (R1 ◦ R1)+ (R1 ◦ R1 ◦ R1) . (7)

Fixed rewards. It is possible to eliminate variance in fer-
tility by creating reward matrices where every individual
in a given stage produces exactly the mean number of
offspring, in which case

R2 = R1 ◦ R1 (8)

R3 = R1 ◦ R1 ◦ R1. (9)

In most demographic models, mean fertility is stage-
specific rather than transition-specific. That is, mean fertil-
ity is described by a vector f that typically appears in the
first row of the matrix A. An individual in stage i produces,
on average, fi offspring per time step, regardless of what
transition the individual may make. In this case

R1

1 01

1 01
1 01 (10)

= 1s
(
fT 01×α

)
. (11)

If parental survival is required for reproduction, then the last
row[s] of R1 should be set to zero.

The statistics of LRO

In this model, every individual is subject to the same rates
at any given stage, so there is no heterogeneity. Even so,
each individual may experience a different life course. The
resulting variation among individuals is due to the indi-
vidual stochasticity implied by the vital rates in P and the
fertility process described by the Ri . Our task is to derive
the statistics of LRO from this information.

Let ρk be a vector (dimension s×1) whose ith entry is the
kth moment of the remaining lifetime reproductive output
of an individual starting in state i, i.e.,

ρk =
(
E

[
ρk
i

] )
. (12)

Because we assume that the dead do not reproduce, we
know that the entries of ρk corresponding to absorbing
states are zero. Thus, we obtain the complete statistics of
LRO if we can find the moment vectors ρ̃k , where ρ̃ con-
tains the first τ entries of ρ, corresponding to the living
stages. This vector is given by

ρ̃ = Zρ and ρ = ZTρ̃ (13)

where

Z =
(
Iτ×τ 0τ×α

)
; (14)

in terms of this matrix, ρ = ZTρ̃. We also define R̃k , the
τ × τ submatrix of Rk corresponding to transitions among
the transient states:

R̃k = ZRkZT. (15)

In terms of these quantities, the moments of LRO are
given by the following theorem.

Theorem 1 The moment vectors ρ̃ of lifetime accumulated
reproductive output are

ρ̃1 = NTZ (P ◦ R1)
T 1s (16)

ρ̃2 = NT
[
Z (P ◦ R2)

T 1s+2
(
U ◦ R̃1

)T
ρ̃1

]
(17)

ρ̃3 = NT
[
Z (P ◦ R3)

T 1s+3
(
U ◦ R̃2

)T
ρ̃1+3

(
U ◦ R̃1

)T
ρ̃2

]
(18)

and, in general,

ρ̃m = NTZ (P ◦ Rm)
T 1s +

m−1∑

k=1

(
m

k

)
NT

(
U ◦ R̃m−k

)T
ρ̃k

(19)

where N = (Iτ − U)−1 is the fundamental matrix of the
Markov chain.

Proof See Appendix A.1



Theor Ecol (2017) 10:355–374 359

In terms of the moment vectors provided by Theorem 1,
the mean, variance, standard deviation, and coefficient of
variation of LRO, and Crow’s index I of opportunity for
selection, are given by

E(ρ̃) = ρ̃1 (20)

V (ρ̃) = ρ̃2 −
(
ρ̃1 ◦ ρ̃1

)
(21)

SD(ρ̃) =
√
V (ρ̃) (22)

CV (ρ̃) = D
(
ρ1

)−1
SD(ρ̃) (23)

I = CV (ρ̃) ◦ CV (ρ̃). (24)

We focus in this paper on statistics obtained from the first
and second moments; these statistics, such as the variance,
describe variability of the distribution. Calculations of the
skewness, as a measure of the shape of the distribution,
are given in Caswell (2011) and Van Daalen and Caswell
(2015). All of the methods we present here can be applied
to these statistics.

Partitioning variance: within and between pathways

Variance in LRO is partly due to individuals following dif-
ferent pathways through the life cycle and partly due to
variance in stage-specific fertility along those pathways.
The overall variance V (ρ̃) can be decomposed into these
components using the law of conditional variance

V (ρ̃) = Vwithin + Vbetween (25)

(Rényi 1970, Theorem 1, p. 275). To calculate the variance
between trajectories, we eliminate the within-trajectory
variance by calculating V (ρ̃) using the fixed reward model,
in which the second moment matrix R2 is given by Eq. 8.
The within-trajectory variance is obtained by subtraction as
Vwithin = V (ρ̃) − Vbetween.

Sensitivity analysis of LRO

The statistics of LRO depend on the life history parame-
ters that determine the transition matrices U andM, and the
moment matrices R1, R2, . . . . Sensitivity analysis reveals
how these parameters affect LRO; our goal is to derive
the sensitivity and elasticity of LRO to changes in any
parameters. Although sensitivity analysis of the net repro-
ductive rate R0 has been presented before (Matser et al.
2009; Caswell 2009), there has been no such analysis for the
variance or other measures of variation in LRO.

We derive sensitivity formulae using matrix calculus for-
malism (Caswell 2007, 2008, 2009, 2012; Caswell and
Salguero-Gómez 2013). Let θ be a vector (p × 1) of
parameters of interest; these could be mortalities, transition
probabilities, means or variances of fertility, etc. The sensi-

tivity of the moment vector ρ̃m to the parameter vector θ is
the derivative matrix
dρ̃m

dθT =
(

dρ̃m(i)
dθ(j)

)
τ × p. (26)

That is, the (i, j) entry of this sensitivity matrix is the
derivative of the ith entry of ρ̃m with respect to the j th entry
of θ .

To write the sensitivity of the ρ̃m, let us define the
following matrices.

Vi =
(
1Ts ⊗ Z

)
Kss

[

D (vec Ri )
dvec P
dθT +D(vec P)

dvec Ri

dθ

]

(27)

Wi,j =
(
ρ̃T
i ⊗ Iτ

)
Kττ

[

D
(
vec R̃j

) dvec U
dθT +D (vec U)

dvec R̃j

dθT

]

+
(
U ◦ R̃j

)T dρ̃i

dθT (28)

Xi =
(
ρ̃T
i ⊗ Iτ

)
Kττ

dvec U
dθT . (29)

In Eqs. 27–29, Kmn is the vec-permutation matrix of order
(m, n); see Henderson and Searle (1981) and Magnus and
Neudecker (1979).

Theorem 2 Let P, U, and M define the absorbing Markov
chain in Eq. 3, with τ transient states, α absorbing states,
and s = τ+α total states. LetRi contain the ith moments of
the reproductive rewards corresponding to each transition.
Let θ be a vector of parameters. The vector ρ̃m contains the
mth moments of remaining LRO for each of the τ transient
stages. The sensitivity of ρ̃m to θ is

dρ̃m

dθT = NT

[

Vm +
m−1∑

k=1

(
m

k

)
Wk,m−k + Xm

]

m = 1, 2, . . .

(30)

Proof Proof is given in Appendix A.2.

The sensitivities of the first three moments of LRO are of
particular interest; they are

dρ̃1

dθT = NT (V1 + X1) (31)

dρ̃2

dθT = NT (
V2 + 2W1,1 + X2

)
(32)

dρ̃3

dθT = NT (
V3 + 3W1,2 + 3W2,1 + X3

)
. (33)

If, as is often the case, the model includes only a single
absorbing state (death), thenM is a (1× τ )matrix, given by

M = 1Tτ − 1TτU 1 × τ. (34)
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In this case, the derivative of P that appears in Eq. 27 is

dvec P
dθT =

[
C1 − C2

(
Iτ ⊗ 1Tτ

)] dvec U
dθT (35)

where

C1 =
(
Iτ×τ

01×τ

)
⊗

(
Iτ×τ

01×τ

)
(36)

C2 =
(
Iτ×τ

01×τ

)
⊗

(
0τ×1
I1×1

)
(37)

Caswell and Van Daalen (2016). This permits expressing all
the effects of θ on the transition matrix P in terms of effects
on U (see Appendix A.2).

Sensitivity of the statistics of LRO

The moments ρ̃i provide the statistics (21)–(24) describing
the inter-individual variability of LRO, including the vari-
ance, standard deviation, coefficient of variation, and the
scaled variance (Crow’s index) (Caswell 2011; Van Daalen
and Caswell 2015).

The sensitivities of these quantities are

dV (ρ̃)

dθT = dρ̃2

dθT − 2D(ρ̃1)
dρ̃1

dθT (38)

dSD(ρ̃)

dθT = 1
2
D

[
SD(ρ̃)

]−1 dV (ρ̃)

dθT (39)

dCV (ρ̃)

dθT = D
(
ρ̃1

)−1 dSD(ρ̃)

dθT

−
(
SD(ρ̃) ⊗ Iτ

)
D

(
ρ̃1

)−2 dρ̃1

dθT (40)

dI
dθT = 2D

[
CV (ρ̃)

] dCV (ρ̃)

dθT . (41)

For derivations, see Appendix A.3.

Elasticity

The derivatives in Theorem 2 and Eqs. 38–41 measure the
effect of an additive perturbation of the parameter vector θ .
Elasticities, which measure the proportional change result-
ing from a proportional change in θ , are easily calculated.
Let ξ be any quantity calculated from the demographic
model. The elasticity of ξ with respect to θ is the matrix

εξ

εθT = D(ξ)−1 dξ

dθT D(θ). (42)

As usual, elasticity calculations can be applied only if ξ > 0
and θ ≥ 0.

Some special perturbations

Here we consider some perturbations that are of special
interest: the survival and transitions in stage-classified mod-
els and sensitivity to means and variances of stage-specific
fertility.

Mortality and transitions in stage-classified models

In an age-classified model, the transient matrix U is com-
pletely determined by the mortality schedule (see “Age-
classified human populations” for age-classified examples).
In a stage-classified model, however, U depends on both
survival and probabilities of transitions among stages. To
calculate sensitivities of LRO to survival and transition
probabilities, we write

U = G# (43)

where # has the survival probabilities σ on the diagonal;
i.e., # = D(σ ), and G is a matrix of transition probabilities
conditional on survival. Differentiating (43) gives

dvec U = (Iτ ⊗ G) dvec # + (# ⊗ Iτ ) dvec G. (44)

Writing D(dσ ) = I ◦
(
1τdσ T

)
and simplifying lead to

dvec U
dσ T = (Iτ ⊗ G)D(vec I) (Iτ ⊗ 1τ ) , (45)

and since σ = exp(−µ),

dvec U
dµT = −dvec U

dσ T D(σ ). (46)

From (44), the sensitivity of U to the growth matrix G is

dvec U
dvecTG

= (#T ⊗ I). (47)

However, G is column-stochastic; i.e., its columns must
sum to 1. An arbitrary perturbation of G would result in
the loss of the column-stochastic property. The only rele-
vant perturbations are those that maintain the column sums.
Thus, perturbations of the entry gij must be compensated for
by changes in other elements of column j . Caswell (2001,
2013) presents a method for compensating for perturba-
tion of each entry in a column-stochastic matrix in a way
that maintains the proportional structure of the column. In
matrix notation, we write

dvec U
dvecTG

∣∣∣∣
comp

= dvec U
dvecTG

dvec G
dvecT%

(48)

where the matrix % is a matrix of perturbations that include
the compensation for the column sums. The matrix of
derivatives of G with respect to % is given by Caswell
(2013). Let gi denote column i of G; then

dvec G
dvecT%

= Iτ 2 −
τ∑

i=1

Eii ⊗
[
D

(
gi

)
C D

(
1 − gi

)−1
]
(49)
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where C = E − I.

Sensitivity to means and variances of fertility

Perturbations of fertility appear in Eqs. 27–29 as deriva-
tives of the reproductive reward matrices Ri . When the
distributions of stage-specific fertilities are specified by a
parametric distribution, the moments may be linked, so that
changes in mean fertility also affect the variance (e.g., in
the Poisson distribution, the variance is equal to the mean).
Sometimes, however, it is of interest to treat the mean and
variance of fertility as independent traits and calculate the
sensitivity of LRO to the mean, holding the variance fixed,
and to the variance, holding the mean fixed. This subtle but
important distinction was emphasized by Tuljapurkar et al.
(2003) and Haridas and Tuljapurkar (2005) in the context
of the elasticity of the stochastic growth rate to the entries
of a stochastically varying matrix. One might compute the
effect of changing one of the matrix entries (perhaps by a
change in energy allocation strategy), recognizing that this
would change both the mean and the variance. Or, one might
be interested in the effects of variance per se and manipu-
late the moments to calculate elasticities with respect to the
mean and variance independently.

As in Eq. 11, suppose that fertility is defined by a fertil-
ity vector f with first and second moments f1 and f2, and a
variance vector

v = f2 − (f1 ◦ f1) . (50)

The first and second moment matrices are given by

Ri = 1sfTi Z i = 1, 2. (51)

Sensitivity to mean fertility, variance fixed From Eq. 50,
it follows that

dv = df2 − 2D(f1)df1. (52)

To hold the variance fixed, we require dv = 0, which
implies that

df2
dfT1

= 2D(f1). (53)

To evaluate sensitivity to the mean, we set the parameter
vector θ = f1, subject to Eq. 53, and obtain

dvec R1

dθT

∣∣∣∣
dv=0

=
(
ZT ⊗ 1s

)
(54)

dvec R2

dθT

∣∣∣∣
dv=0

=
(
ZT ⊗ 1s

) df2
df1

(55)

= 2
(
ZT ⊗ 1s

)
D(f1). (56)

Substituting these expressions into Eqs. 31 and 32, and then
into Eq. 38, we obtain the sensitivity of the mean and vari-
ance of LRO to changes in mean fertility, with variance in
fertility held constant.

Sensitivity to variance in fertility, mean fixed To hold the
mean fixed, we require that df1 = 0, in which case (52)
implies that

df2
dvT

= Iτ . (57)

Now we set the parameter vector θ = v to obtain

dvec R1

dθT

∣∣∣∣
df1=0

= 0s×τ (58)

dvec R2

dθT

∣∣∣∣
df1=0

=
(
ZT ⊗ 1s

) df2
dvT

(59)

=
(
ZT ⊗ 1s

)
. (60)

Substituting these expressions into Eqs. 31 and 32, and then
into Eq. 38, gives the sensitivity of the mean and variance
of LRO to changes in the variance in fertility, with mean
fertility held constant.

A protocol for the analysis of lifetime reproductive
output

The results presented to this point provide a protocol for
analysis of lifetime reproductive output, applicable to any
matrix population model. A stepwise version of this pro-
tocol is given in Table 1. In the next section, we present
age-classified and stage-classified examples of the analysis.

Examples

This section presents examples of the calculation of the
statistical properties of lifetime reproductive output and
its subsequent sensitivity analysis, for both age-classified
and stage-classified population. In “Age-classified human
populations,” we analyze a set of age-classified human pop-
ulations that span a wide range of demographic conditions.
In “A stage-classified tree population,” we analyze a size-
classified model for Canadian hemlock (Tsuga canadensis),
a coniferous tree.

Age-classified human populations

The transition matrix U for an age-classified model con-
tains survival probabilities on the subdiagonal and zeros
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Table 1 A step-by-step protocol for analysis of lifetime reproductive output and its sensitivity, from any stage- or age-classified matrix population
model

1. Obtain a transition matrix U, perhaps from decomposing a population projection matrix as A = U+ F.
2. Locate reproductive transitions.

(a) If fertility is transition specific, identify the transitions (e.g., to reproductive states).

(b) If fertility is stage-specific, extract the vector f from F.
3. Obtain statistical moments of fertility:

(a) From empirical measurements of the moments of stage-specific fertility, or

(b) From an assumption of Bernoulli [see equation (5)], or Poisson [ see Eqs. 6 and 7], or fixed [see Eqs. 8 and 9] reproduction.

4. Construct reward matrices from Eq. 11.

5. Compute desired moments of LRO from Eqs. 16–19.

6. Compute desired statistics of LRO from Eqs. 21–24.

7. Sensitivity analysis

(a) Specify parameter vector θ of interest

(b) Calculate derivatives of U, and Ri to θ . Take advantage of Eqs. 35 or 90–92 to compute derivatives of P to θ .

(c) If the matrix is stage-classified,

i. Decompose U = G&.

ii. Use Eq. 46 to compute the derivative of U to mortality.

iii. Use Eq. 49 to compute the derivative of G to θ , including compensation to preserve column sums of G
(d) Compute derivatives of the moment vectors ρ̃i for the moments of interest (i = 1, 2 suffice to analyze the variance, standard deviation,

CV, and I).
i. Compute V,W, and X using Eqs. 27–29.

ii. Compute derivatives of ρ̃i using Theorem 2.

(e) Compute sensitivity of desired statistics of LRO using Eqs. 38–41.

(f) If desired, compute elasticities of statistics of LRO using Eq. 42.

elsewhere. One absorbing state, death, is included, and the
mortality matrixM is calculated according to Eq. 34.

We ignore multiple births and treat the entries of the
fertility vector f as the probability of producing a single off-
spring. The offspring production is given by the reward rij ,
following a Bernoulli distribution,

rij =
{
1 with probability fj
0 with probability (1 − fj )

. (61)

The matrix R1 containing the first moment of the reward
matrix is built from the fertility vector using Eq. 11.
The higher moments of the reward matrix follow from
the Bernoulli model of reproduction, in which the higher
moments are all equal to the first, as in Eq. 5, so that
R1 = R2 = R3.

We present results for nine populations: the Netherlands
(1950 and 2009), Sweden (1891 and 2010), Japan (1947
and 2009), two hunter-gather populations (the Ache of
subtropical Paraguay (Gurven and Kaplan 2007; Hill and
Hurtado 1996) and the Hadza of the Tanzanian savanna
Blurton Jones 2011), and the Hutterites of North America.
The Netherlands, Sweden, and Japan are typical of devel-
oped countries progressing through the demographic transi-
tion. The hunter-gatherer populations have higher mortality,

lower life expectancy, and higher fertility than the developed
countries. The Hutterites, an Anabaptist religious commu-
nity in the United States and Canada, are known for having
the highest total fertility for any known human population
(Eaton and Mayer 1953), but are assumed to have expe-
rienced mortality rates similar to that of the USA around
1946–1950.

Data for the Netherlands, Sweden, and Japan were
obtained from the Human Mortality Database (2013) and
the Human Fertility Database (2013). Data for the Ache
were obtained from Gurven and Kaplan (2007) and Hill
and Hurtado (1996), and for the Hadza from Blurton Jones
(2011). The fertility and mortality schedules for the Hut-
terites were taken from Eaton and Mayer (1953).

Variance in LRO Using Theorem 1 and Eqs. 21–24, and
following the protocol in Table 1, we computed the mean,
variance (both within and between pathways), standard
deviation, coefficient of variation, and Crow’s I from U,
R1, and R2. We also calculated life expectancy as the col-
umn sums of the fundamental matrix. The results are given
in Table 2.

Not surprisingly, recent populations in developed coun-
tries have higher longevity and lower mean lifetime repro-
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Table 2 The statistics of lifetime reproductive output for the Netherlands (NLD), Sweden (SWE), and Japan (JPN), with two points in time for
each country, two hunter-gatherer populations, the Hadza and the Ache, and a population of high-fertility Hutterites

Population Mean V Vbetween (%) Vwithin (%) SD CV I Life exp.

NLD 1950 2.96 2.91 12.5 87.5 1.71 0.58 0.33 73.1

NLD 2009 1.78 1.61 1.4 98.6 1.27 0.72 0.51 83.1

SWE 1891 3.00 5.60 55.6 44.4 2.37 0.79 0.62 53.0

SWE 2010 1.97 1.79 1.4 98.6 1.34 0.68 0.46 84.0

JPN 1947 3.50 6.10 54.8 45.2 2.47 0.71 0.50 54.2

JPN 2009 1.35 1.26 0.9 99.1 1.12 0.83 0.69 86.9

Hadza 3.13 11.30 78.9 21.1 3.36 1.07 1.15 34.6

Ache 4.48 17.23 81.1 18.9 4.15 0.93 0.86 38.0

Hutterites 7.53 8.58 41.3 58.7 2.93 0.39 0.15 70.0

ductive output. The hunter-gatherer and Hutterite popula-
tions show the highest mean LRO. In each of the developed
countries (the Netherlands, Sweden, and Japan), the reduc-
tions in mean LRO and increases in life expectancy are
accompanied by reductions in the variance in LRO. The
Ache and Hadza show the highest variance in LRO, and
the variance for the Hutterites is higher than any of the
developed countries.

Most of the variance in the hunter-gatherer populations is
due to variance among pathways, which in an age-classified
model is determined by survival from birth through the
reproductive ages. The most recent years in developed
countries show extremely low between-pathway variance
because almost all women survive through their reproduc-
tive years (Van Daalen and Caswell 2015). The Ache and
Hadza, with the lowest life expectancy, show very high
Vbetween. The Hutterites have a long life expectancy, but their
high fertility amplifies the effect of differences in longevity,
so Vbetween is similar to that of Japan in 1947 and Sweden in
1891.

The opportunity for selection I varies less (about sev-
enfold) among these populations than does the variance
in LRO (about 13-fold). The Hutterites showed the lowest
opportunity for selection of all the populations we included,
yet the other high-fertility populations, the Ache and the
Hadza, show the highest values for the opportunity for selec-
tion. Taking into account the fact that the hunter-gatherer
populations have the highest variances in LRO, mostly due
to variation in the pathways individuals take through life, we
posit that the high opportunity for selection reflects room for
improvement in survival rates from birth to reproductive ages.

The variance in LRO documented in Table 2 is calcu-
lated on the assumption that every individual experiences
the same vital rates at every age and is thus due to individual
stochasticity. Crow’s I is a measure of the potential rela-
tive increase in fitness per generation, but the variance here
is stochastic, not genetic, so the opportunity for selection is
only apparent, not real.

Sensitivity analysis The age-classified models for human
populations are parameterized by the mortality rate vector µ
and the mean fertility vector f. The sensitivity of the statis-
tics of LRO to these parameters, obtained from Theorem 2
and Eqs. 38–41, requires dvec U/dµT and dvec Ri/dfT for
i = 1, 2. The derivative of U is

dvec U
dµT = −D(vec Y)(I ⊗ 1)D(P) (62)

where Y is an indicator matrix defining the subdiagonal
structure of U, and P = exp(−µ) is the vector of survival
probabilities. The Bernoulli distribution assumption implies
that the derivatives of the first and second (and all other)
moments are equal, with

dR1

dfT
=

(
ZT ⊗ 1s

)
(63)

(for derivations, see Appendix A.4).
The sensitivity of mean LRO, variance in LRO, and

Crow’s I to mortality and fertility are shown in Fig. 1.
Not surprisingly, increased mortality at any age up to the
end of the reproductive period reduces mean LRO, while
increased fertility increases mean LRO. The mortality effect
is greatest for the Hutterites, because their high fertility
magnifies the impact of mortality changes, and least for the
recent developed countries. The sensitivity of mean LRO
to fertility is given by the survivorship function and thus
is smallest for the Ache and Hadza. It is highest for recent
developed countries in which low mortality means that
almost everyone would survive to benefit from an increase
in fertility.

The variance in LRO increases with an increase in mor-
tality rate for most populations; the effect is greatest for the
Hutterites (Fig. 1). For the developed countries, the sensi-
tivity is positive over most of the reproductive ages. For the
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Fig. 1 Sensitivity of mean LRO, variance in LRO, and Crow’s index to changes in age-specific mortality (left column) and age-specific fertility
(right column) for nine human populations

Hadza and the Ache, variance in LRO decreases with higher
age-specific mortality rates. Variance in LRO increases with
increasing fertility rates for all countries. The Hutterites,
Sweden, theNetherlands, and Japan show a reduced sensitivity
of variance in LRO to fertility around the reproductive ages.

Crow’s opportunity for selection I combines both the
mean and the variance. Increased mortality during the repro-
ductive period increases I in all the populations. It is most
sensitive to mortality in the Ache and Hadza populations
and least sensitive in the Hutterites. An increase in fertility
reduces I in all the populations. Thus, the net result of envi-
ronmental changes that affect both mortality and fertility
cannot be predicted a priori.

Both mortality and fertility vary widely across ages in
these populations, so it may be useful to standardize the
responses by calculating elasticities (Fig. 2). The elasticities
of the mean and variance of LRO with respect to mortality
are generally low, except for effects of infant mortality,

especially for the hunter-gatherer populations, in which
infant mortality is high. However, the elasticity of Crow’s
I is large and positive, in fact, the largest of any of the
elasticities obtained. The elasticities with respect to fertility
are naturally confined to the reproductive ages. Proportional
increases in fertility increase the mean and variance of LRO,
but reduce the value of Crow’s I.

A stage-classified tree population

As an example of a typical stage-classified population, we
analyze a model for the Canadian hemlock (T. canaden-
sis L.). Lamar and McGraw (2005) developed a model
based on six size classes (from < 5.0 cm dbh (diameter at
breast height) to > 42.5 cm dbh). They reported popula-
tion projection matrices for trees in a low-disturbance plot
in Shenandoah National Park in the eastern USA, between
1997 and 1999. We obtained U and F from the mean popu-
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Fig. 2 Elasticity of mean LRO,
variance in LRO, and Crow’s
index to changes in age-specific
mortality (left column) and age-
specific fertility (right column)
for nine human populations
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lation matrix A obtained from the COMPADRE Plant Matrix
Database (COMPADRE Plant Matrix Database 2014).

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.90 0 0.30 0.77 1.96 6.03
0.004 0.96 0 0 0 0
0 0.012 0.97 0 0 0
0 0 0.017 0.98 0 0
0 0 0 0.012 0.96 0
0 0 0 0 0.018 0.99

⎞

⎟⎟⎟⎟⎟⎟⎠
(64)

Reproduction was measured as new recruits (rather than
seeds or seedlings) per individual, per year, as a function of
size (Lamar and McGraw 2005). In the absence of informa-
tion on the empirical distribution of size-specific fertility,
we use the Poisson distribution to define the reward moment
matrices R1 and R2 following Eqs. 11 and 6.

Results The mean, variance, and other statistics of lifetime
reproductive output for T. canadensis, obtained using The-
orem 1 and Eqs. 21–24, are shown in Table 3. Because of
the high mortality of small trees, the mean LRO is small and
life expectancy is only 12 years. However, the variance in

LRO is very high, as is the apparent opportunity for selec-
tion I. The variance in LRO exceeds that for any of the
human populations by two orders of magnitude. The value
of I is 600 times higher than the highest for human popu-
lations in Table 2. Almost all of the variance in LRO is due
to variance among pathways. The variance due to stochastic
rewards along those pathways is small and approximately
equal to the mean, which reflects the assumption of Poisson
distributed fertility. It is swamped by the huge differences
among pathways of trees that die small and those that
become large and reproductive.

Sensitivity analysis As in Eq. 43, the transition matrix U
is the product of the survival matrix # and a growth matrix
G. The derivations of the equations below are presented in
Appendix A.4. The derivative of the transition matrixUwith
respect to mortality is

dvec U
dµT = dvec U

dvecT#
dvec#
dµT = −(I ⊗ G)D(vec I)(I ⊗ 1)D(p). (65)
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Table 3 The statistics of
lifetime reproductive output for
T. canadensis

Mean V Vbetween (%) Vwithin (%) SD CV I Life exp.

1.42 1.41 × 103 99.9 0.1 37.54 26.39 696.23 12.16

The sensitivity ofU to the growth matrixG, maintaining the
column sums, is

dvec U
dvecTG

∣∣∣∣
comp

= (# ⊗ I)
dvec G
dvecT%

. (66)

where dvec G/dvecT% is given by Eq. 49.
The sensitivity of LRO to fertility is determined by the

derivatives of the Ri to fertility. The derivative of the matrix
R1 of mean fertility is given by Eq. 63. The derivatives of
R2 and R3 with respect to f are calculated from the Poisson
distribution using Eqs. 6 and 7:

dvec R2

dfT
=

[
Is2 + 2D(vec R1)

] (
ZT ⊗ 1s

))
(67)

dvec R3

dfT
=

[
Is2+6D(vec R1)+3D (vec (R1 ◦ R1))

] (
ZT ⊗ 1s

)
. (68)

Incorporating (67) and (68) into Eqs. 27–29 and applying
Theorem 2 provides the sensitivity of lifetime reproduc-
tive output to mortality, fertility, and the growth matrix (see
Appendix A.4 for the derivations). To make comparisons
across these variables measured on different scales, we cal-
culate the elasticity or proportional sensitivity of LRO using
Eq. 42.

An increase in mortality in the first size-class or the
last size-class reduces both mean lifetime reproduction of
Hemlock individuals and variance in LRO (Fig. 3). Increas-
ing fertility rates increases both mean and variance in LRO
for trees in the last size-class. These are the trees with the
highest survival and fertility rates.

The elasticity of the mean and variance to the growth
matrix G is shown in Fig. 4. The results are dominated by
the extremely large negative elasticities to the probability
of remaining in stage 1 (thereby reducing growth) and the
large positive elasticity to the probability of remaining in
the largest size class. Increasing the probability of staying in
any size-class (again, reducing growth) reduces both mean
and variance in LRO.

The mean and variance, the contribution to the variance
of different processes, and the sensitivity of these indices
to parameters differ between these examples. This reflects
the different life history strategies of trees and humans, the
difference between between age-classified populations with
low fertility, and a size-classified population with strongly
size-dependent fertility, and the difference between assump-
tions of Bernoulli or Poisson distributed rewards. Vastly

different life histories can be incorporated into the Markov
chain with reward framework, allowing for the investiga-
tion of life history in many species, and from different
perspectives.

Discussion

Lifetime reproductive output is an outcome of the life cycle.
Any demographic model implies a distribution for LRO, just
as it implies more familiar measures such as R0 and life
expectancy. Even in a deterministic environment, the LRO is
a random variable; the stochasticity arises from two sources:
the random pathway that the individual follows through its
life and the random fertility it exhibits at each stage on that
pathway.

Our results in “Markov chains with rewards as a model
for LRO” provide the analytical machinery needed to calcu-
late all the statistical properties of LRO that follow from a
specified set of stages, a transition matrix, and the moments
of stage-specific fertility. These statistical properties include
measures of variability among individuals (the variance, CV,
skewness, opportunity for selection, etc.). It is important to
recognize that this variability does not reflect heterogeneity,
genetic or otherwise. Every individual is subject to the same
set of vital rates at any stage in the life cycle. Only the out-
comes of applying those rates vary; the variation is thus due
to individual stochasticity.

The variance, or standardized variance, calculated from
demographic models for a variety of species, is large (see
also Caswell 2011; van Daalen and Caswell 2015; Steiner
et al. 2010). Individual stochasticity creates a large apparent
opportunity for selection that is not, in fact, a true opportu-
nity. In this sense, as emphasized by Steiner and Tuljapurkar
(2012), the calculations of individual stochasticity provide a
neutral model for LRO. A number of comparisons of calcu-
lated variance (due to stochasticity) and observed variance
(due to some mix of stochasticity and heterogeneity) have
shown that stochasticity may explain a significant amount,
or all, of the observed variance (Caswell 2011; Van Daalen
and Caswell 2015; Steiner et al. 2010).

It is important to remember what neutral model results
do, and do not, imply (Caswell 1976). The results show
that a certain amount of variance can be accounted for by
stochasticity, and hence, that the mere observation of such
variation is no evidence for heterogeneity. It does not prove
that the observed variance is stochastic, or that there is no
heterogeneity, as pointed out by Steiner and Tuljapurkar
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Fig. 3 Elasticity of mean LRO
and variance in LRO to changes
in stage-specific mortality (left
column) and stage-specific
fertility (right column) for T.
canadensis
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(2012). It calls for a comparison with models explicitly
incorporating heterogeneity, either observed or unobserved,
as suggested by Cam et al. (2016). For examples of this
approach, see Caswell (2014); Hartemink et al. (2017);
Jenouvrier et al. (2016).

The results of Theorem 1 provide an exact solution to
the calculation of the statistics of LRO, including both com-
ponents (within and between pathways; see “Partitioning
variance: within and between pathways”). We also provide
a complete sensitivity analysis for LRO. Theorem 2 makes
it possible to calculate the sensitivity and elasticity of all the
moments of LRO and all the statistics calculated from those
moments, with respect to changes in mortality, transition
probabilities, and the moments of stage-specific fertility.

The results include the sensitivity to changes in mean fer-
tility (holding variance constant) and variance in fertility
(holding the mean constant).

The formulae for the moments in Theorem 1 and the sen-
sitivities in Theorem 2 are complicated and opaque, because
the relationships between LRO and the life cycle structure,
the moments of reproduction, the probabilities of survival,
and the infinite diversity of pathways through the life cycle,
are complicated. Simplifications that permit qualitative gen-
eralities are always welcome, and more work on this will be
valuable.

We applied sensitivity analysis to several populations of
humans and a population of trees. The patterns of sensitivity
and elasticity of LRO that we report for these populations

Fig. 4 Sensitivity of the mean
LRO and variance in LRO of
Tsuga canadensis to the growth
matrix (left and right panels,
respectively)
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have not been described before. Some suggestive patterns
appear; they warrant further investigation.

In long-lived age-classified populations with low repro-
ductive output, as diverse as the nineteenth century Swedes,
mid-twentieth century Hutterites, the twenty-first century
Dutch, and Hadza and Ache hunter-gatherers, the sensitiv-
ity of mean LRO to mortality is negative. Most populations
show a positive sensitivity of variance in LRO to mortality
for the first 40 years of life, only showing a small negative
sensitivity between ages 20 and 40. The Ache and Hadza
have more pronounced negative sensitivity around these
ages, with the Hadza showing negative sensitivity across the
first 40 years of life. The sensitivity of Crow’s I to mor-
tality in the first 40 years of life is positive, showing that
an increase in mortality would increase the apparent oppor-
tunity for selection of lifetime reproduction. Patterns for
elasticities are similar, though smaller in magnitude.

All populations show broadly similar patterns for the sen-
sitivity of LRO to fertility. The sensitivities of mean LRO
and variance in LRO to fertility are positive. The sensi-
tivity of Crow’s I to fertility is negative. The elasticity
of mean and variance to fertility is positive, but the elas-
ticity of Crow’s I is negative. According to these results,
populations in modern countries would reduce the apparent
opportunity for selection of LRO with increasing fertilities,
and high-fertility populations such as Hutterites and hunter-
gatherers would only slightly reduce the opportunity for
selection should fertilities increase.

On average, the variance in LRO is 59% between path-
ways and 41% within pathways. However, the individual
populations differ significantly in these contributions by
sources of variance. In the twenty-first century in Japan,
Sweden, and the Netherlands, only 1.2% of variance in LRO
is between pathways and 98.8% is within pathways. Vari-
ance in LRO of the high-fertility populations, the Ache,
Hadza, and Hutterites, is 71% between pathways and 29%
within pathways.

In contrast, in T. canadensis, with size-dependent demog-
raphy, high fertility, and strongly increasing fertility with
size, we find that the elasticities of both mean and variance
in LRO to mortality are negative across all size classes. The
elasticities of these statistical properties to changes in fer-
tility in the reproductive classes are positive. In case of the
elasticity to growth transition rates, mean and variance in
LRO once again show similar patterns. Elasticity to stasis,
i.e., not growing, is negative for the first five size classes,
and positive for the last size class.

Lifetime reproductive output interests population ecol-
ogists and epidemiologists (for whom R0 is a measure
of population growth), evolutionary biologists (for whom
variance in LRO is a measure of potential selection), and
human demographers (for whom declines in LRO follow-
ing the demographic transition pose serious social policy

challenges). It is thus important that our analysis is not
restricted to any one class of population models. It applies
equally to age-structured, stage-structured, and multistate
models, and to any reproductive strategy. It also applies to
periodic and stochastic time-varying models, by applying
Theorems 1 and 2 to the models in Caswell (2011). The
method can also be applied to rewards other than repro-
ductive output, including health status (Caswell and Zarulli
2015) and economic transfers (Caswell and Kluge 2015).

The transition matrix U is part of any population pro-
jection matrix; the COMPADRE and COMADRE matrix
databases provide many examples (Salguero-Gómez et al.
2016; Salguero-Gómez et al. 2015). The mean reproduc-
tive reward matrix R1 can be obtained from the projection
matrix, but the higher moments cannot and require assump-
tions of a parametric distribution for fertility. We encourage
researchers with the appropriate reproduction data to report
not only mean fertility but also the higher moments, or even
the entire distribution.

Individual stochasticity arises in both reproductive output
and in survival or longevity. Our results here complement
the analysis of variation in longevity using Markov chain
methods, which are widely used in ecology (e.g., Cochran
and Ellner 1992, Caswell 2001, 2006, 2009, Horvitz and
Tuljapurkar 2008, Tuljapurkar and Horvitz 2006) and have
well-developed sensitivity analyses. The Markov chain with
reward model now permits a similarly deep analysis of
lifetime reproduction and its sensitivity analysis.
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A Derivations

A.1 Proof of Theorem 1: moments of LRO

We assume a finite state absorbing Markov chain with tran-
sition matrix P given by Eq. 3, with τ transient states, α

absorbing states, and s = τ + α total states. The (i, j) entry
of the s × s matrix Rk is the kth moment of the reproduc-
tive reward associated with the transition from state j to
state i. We assume that no rewards accrue to individuals in
absorbing states, so columns τ + 1 to s of Rk are zero.

The ith entry of the s × 1 vector ρm is the mth moment
or remaining lifetime reproductive output for an individual
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in stage i. Caswell (2011, Proposition 1) derived an iterative
approximation for the moment vectors,

ρm(t+1)=
m∑

k=0

(
m

k

)
(P ◦ Rm−k)

Tρk(t) m = 1, 2, . . . (69)

which converges to the lifetime accumulation, for each
stage, as t → ∞. To obtain an analytical solution for the
moment vectors, we solve (69) for its equilibrium.

The equilibrium moment vector ρm satisfies

ρm =
(
m

0

)

(P ◦ Rm)
T ρ0+

m−1∑

k=1

(
m

k

)

(P ◦ Rm)
T ρk+

(
m

m

)

(P ◦ R0)
T ρm

(70)

Because ρ0 = 1s and R0 is a s × s matrix of ones, this
simplifies to

(
I − PT) ρm = (P ◦ Rm)

T 1s +
m−1∑

k=1

(
m

k

)
(P ◦ Rm−k)

T ρk.

(71)

Solving (71) directly for ρm is impossible because the
matrix

(
I − PT) is singular. However, since no rewards

accumulate in the absorbing states, so we need solve only
for the vector of remaining LRO from the transient states,
which we denote by ρ̃m. Multiplying both sides of Eq. 70
by the matrix Z in Eq. 14 gives

ρ̃m = Z (P ◦ Rm)
T 1s+

m−1∑

k=1

(
m

k

)

Z (P ◦ Rm−k)
T ZTρ̃k+ZPTZTρ̃m

(72)

Noting that

ZPTZT = UT (73)

Z (P ◦ Rm−k)
T ZT =

(
U ◦ R̃m−k

)T
(74)

we see that ρ̃m must satisfy

ρ̃m = Z (P ◦ Rm)
T 1s +

m−1∑

k=1

(
m

k

) (
U ◦ R̃m−k

)T
ρ̃k + UTρ̃m (75)

Solving (75) for ρ̃m gives (19) and completes the proof of
Theorem 1.

A.2 Proof of Theorem 2: sensitivity analysis of moments
of LRO

To derive the sensitivity result of Theorem 2, we will break
the result (19) into three types of terms and differentiate
each of these in turn. We rewrite (19) as

(
NT)−1

ρ̃m︸ ︷︷ ︸
A

= Z (P ◦ Rm)
T 1s︸ ︷︷ ︸

B

+
m−1∑

k=1

(
m

k

)(
U ◦ R̃m−k

)T
ρ̃k

︸ ︷︷ ︸
C

(76)

Equation 76 contains three types of terms:

A =
(
NT)−1

ρ̃ (77)

B = Z (P ◦ R)T 1s (78)

C =
(
U ◦ R̃

)T
ρ̃ (79)

We differentiate each of these in turn. Differentiating (77)
gives

dA = d
[(
NT)−1

]
ρ̃ +

(
NT)−1

dρ̃. (80)

Substituting

(
NT)−1 = Is − UT (81)

gives

dA = −
(
dUT) ρ̃ +

(
I − UT) dρ̃, (82)

and applying the vec operator yields

dvecA = −
(
ρ̃T ⊗ I

)
Kττdvec U+

(
I − UT) dρ̃ (83)

Differentiating term B gives

dB = Z (dP ◦ R)T 1+ Z (P ◦ dR)T 1 (84)

Applying the vec operator to both sides of Eq. 84 yields

dvecB =
(
1T ⊗ Z

)
Kss [D(vec R)dvec P+D(vec P)dvec R]

(85)

Differentiating term C gives

dC =
(
dU ◦ R̃

)T
ρ̃ +

(
U ◦ dR̃

)T
ρ̃ +

(
U ◦ R̃

)
dρ̃. (86)

Applying the vec operator yields

dvec C =
(
ρ̃T ⊗ I

)
Kττ

[
D(vec R̃)dvec U+D(vec U)dvec R̃

]

+
(
U ◦ R̃

)
dρ̃ (87)
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Next, differentiate (76) and substitute (83)–(87) where
appropriate; this leads to

(
NT)−1

dρ̃m =
(
1Ts ⊗ Z

)
Kss [D (vec Rm) dvec P+D(vec P)dvec Rm]︸ ︷︷ ︸

Vm

+
m−1∑

k=1

(
m

k

) (
ρ̃k ⊗ Iτ

)
Kττ

[
D

(
vec R̃m−k

)
dvec U+D(vec U)dvec R̃m−k

]
+

(
U ◦ R̃m−k

)T
dρ̃k

︸ ︷︷ ︸
Wk,m−k

+
(
ρ̃T
m ⊗ Iτ

)
Kττdvec U

︸ ︷︷ ︸
Xm

(88)

Using the terms Vm, Wk,m−k , and Xm identified in Eq. 88,
multiplying both sides by NT, and replacing differentials
with derivatives with respect to a vector θ of parameters give

dρ̃m

dθT = NT

(

Vm +
m−1∑

k=1

(
m

k

)
Wk,m−k + Xm

)

(89)

which completes the derivation of Theorem 2.
The term Vi in Eq. 89 contains the derivative

dvec P/dθT. Because P is a block structured matrix and 0
and I are constants, the derivative of P can be written as a
linear combination of the derivatives of U andM,

dvec P
dθT = C1

dvec U
dθT + C2

dvecM
dθT , (90)

where

C1 =
(

Iτ
0α×τ

)
⊗

(
Iτ

0α×τ

)
(91)

C2 =
(

Iτ
0α×τ

)
⊗

(
0τ×α

Iα

)
(92)

(Caswell and van Daalen 2016). In many applications, only
a single absorbing state (death) exists, in which case α = 1
and Eqs. 91 and 92 simplify to Eq. 35.

A.3 Sensitivity analysis of the statistics of LRO

The sensitivity analysis of the statistical properties of LRO
is obtained by differentiating and applying the vec opera-
tor to Eqs. 21–24. Several matrix calculus results are used
frequently in these sensitivity calculations. Roth’s theorem,
i.e.,

vec (ABC) = (CT ⊗ A)vec B, (93)

is applied often, as is the rule for taking the vec of a
Hadamard product,

vec (A ◦ B) = D(A)vec (B)+D(B)vec (A). (94)

For notational clarity, we redefine some of the statistical
properties of LRO as follows in this section only:

v = V (ρ̃) (95)

s = SD(ρ̃) (96)

C = CV (ρ̃) (97)

I = I(ρ̃) (98)

D = D(ρ̃1) (99)

Variance Differentiating the variance in lifetime reproduc-
tive output as given by Eq. 21 gives

dv = dρ̃2 − d(ρ̃1 ◦ ρ̃1). (100)

Applying the vec operator results in

dv = dρ̃2 − dvec (ρ̃1 ◦ ρ̃1), (101)

which, using the rule for taking the vec of a Hadamard
product, yields

dv = dρ̃2 − Ddρ̃1 − Ddρ̃1. (102)

Taking the derivatives with respect to a vector of param-
eters θ and rearranging give

dv
dθT = dρ̃2

dθT − 2D
dρ̃1

dθT , (103)

as found in Eq. 38.

Standard deviation To obtain the sensitivity of the stan-
dard deviation of LRO, we rewrite (22) as

s ◦ s = v (104)

and differentiate this giving us

d(s ◦ s) = dv. (105)

Using the vec operator, we obtain

dvec (s ◦ s) = dv, (106)
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where, after replacing the differentials with derivatives with
respect to θ and applying the Hadamard-rule on the left-
hand side, we find

2D (s)
ds
dθT = dv

dθT (107)

Solving for ds/dθT yields Eq. 39.

Coefficient of variation The sensitivity of the coefficient
of variation is obtained by differentiating

C = D−1s (108)

from Eq. 23, resulting in

dC = d
(
D−1

)
s+ D−1d (s) . (109)

However, for any nonsingular matrix Y,

d(Y−1) = −Y−1d(Y)Y−1. (110)

Thus, Eq. 109 can be written as

dC = −D−1d (D)D−1s+ D−1d (s) . (111)

Applying the vec operator and Roth’s theorem yields

dC = −
(
sT

[
D−1

]T
⊗ D−1

)
dvec (D)+ D−1d (s) . (112)

Noting that

sT
(
D−1

)T
= CT (113)

and that D can be rewritten as

D = I ◦ (1τ ρ̃
T
1) (114)

we obtain

dC = −
(
CT ⊗ D−1

)
dvec

(
I ◦

[
1τ ρ̃

T
1

])
+ D−1d (s) .

(115)

Using the rule for taking the vec of a Hadamard product
and applying Roth’s theorem once more yields

dC = −
(
CT ⊗ D−1

)
D (vec I) (I ⊗ 1τ ) d

(
ρ̃1

)
+D−1d (s) .

(116)

Replacing the differentials with derivatives with respect to
θ gives

dC
dθT = −

(
CT ⊗ D−1

)
D(vec I)(I ⊗ 1τ )

dρ̃1

dθT + D−1 ds
dθT .

(117)

Crow’s index I The opportunity for selection, also known
as Crow’s index, can be calculated from the coefficient of
variation, as shown in Eq. 24. Differentiating this equation
results in

dI = dvec (C ◦ C) . (118)

Applying the vec operator to the Hadamard product yields

dI = D(C)d (C)+D(C)d (C) . (119)

Replacing the differentials with derivatives of Crow’s I with
respect to θ yields

dI
dθT = 2D(C)

dC
dθT (120)

A.4 Deriving sensitivities for the examples

To obtain the sensitivities for mean LRO and other statistics,
the following pieces are required:

dvec U
dθT ,

dvec P
dθT , and

dvec Ri

dθT . (121)

In the case of both humans and trees, a single stage of death
is incorporated, so that the derivative of P with respect to
θ can be obtained from the derivative of U with respect to
θ , as shown in Eq. 35. As the transition matrix depends on
mortality rates and the reward matrix depends on fertility
rates, the required pieces for sensitivity analysis become

dvec U
dµT and

dvec Ri

dfT
. (122)

The way these matrices depend on the underlying vectors
of parameters differs between species, as shown below for
humans and trees.

Humans In humans, U is a function of the mortality rates
µ through its survival probabilities σ . U depends on σ as

U = Y ◦ (1σ T), (123)

where Y is a τ × τ matrix with ones on the subdiagonal and
zeros elsewhere. Given that

σ = e−µ, (124)

the derivative of σ becomes

dσ = −D(σ )dµ. (125)

As such, the complete analytical expression for the sensi-
tivity of the transition matrix to the mortality schedule is

dvec U
dµT = −D(vec Y)(I ⊗ 1)D(σ ). (126)

The sensitivity of the moments of R to a vector of fertil-
ity rates depends on the kind of reproductive strategy used.
In the case of humans, fertility rate is the chance of pro-
ducing a single offspring. With the subsequent assumption
that the moments of the reward matrix follow a Bernoulli
distribution,

dR1

dfT
= dR2

dfT
= dR3

dfT
(127)
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Therefore, we only need to derive the sensitivity of R1 to f
to know all the moments of the reward matrix. Equation 11
can be rewritten as

R1 = 1sfTZ. (128)

Differentiating this entails taking the derivative on both
sides and applying Roth’s theorem. Then, the equation for
the sensitivity is simply

dR1

dfT
=

(
ZT ⊗ 1s

)
. (129)

Trees In trees, the transition matrix consists not only of
survival rates but also growth/stasis/regression rates (see
Equation 43). By differentiating (43) with respect to #, we
obtain
dvec U
dvecT#

= (IT ⊗ G). (130)

As U now depends on mortality rate through #, the sensi-
tivity of the transition matrix to µ is

dvec U
dµT = dvec U

dvecT#
dvec#
dµT . (131)

Given that # can be written as # = I ◦ (1σ T), differentiat-
ing, applying the vec operator, using the rule for taking the
vec of a Hadamard product, and applying Roth’s theorem
give

dvec#
dσ T = D(vec I)(IT ⊗ 1). (132)

Combining Eqs. 130 and 132 with the derivative of σ to µ

derived in Eqs. 125 and 131 becomes

dvec U
dµT = −(IT ⊗ G)D(vec I)(IT ⊗ 1)D(σ ). (133)

The sensitivity of the transition matrix to the growth
matrix is found by differentiating (43) with respect to G

dvec U
dvecTG

= (#T ⊗ I). (134)

However, a complication arises from the fact that G is
column-stochastic, that is, the probabilities of staying or
moving between stages always sums to 1. Sensitivity analy-
sis works on the premise of a small change in the underlying
parameters effecting a chance in the model outcome. In the
case ofG, a small additive change would result in the loss of
the column-stochastic property. Fortunately, we can instead
use a proportional change. Caswell (2001, 2013) presents a
method of proportionally compensating for a perturbation
of a single entry in a column-stochastic matrix by propor-
tionally subtracting the perturbation from the other entries
in that column. In matrix notation, this becomes

dvec U
dvecT%

= dvec U
dvecTG

dvec G
dvecT%

(135)

where

dvec G
dvecT%

= Is2 −
s∑

i=1

(
Eii ⊗ D [G(:, i)]CD [1 − G(:, i)]−1

)
,

with C = E − I. (136)

In trees, reproduction is assumed to adhere to a Poisson
distribution as opposed to a Bernoulli distribution. Higher
moments of the reward matrix therefore depend on R1 as
follows:

R2 = R1 + R1 ◦ R1 and (137)

R3 = R1 + 3R1 ◦ R1 + R1 ◦ R1 ◦ R1. (138)

By differentiating the expression for R2 we obtain

dR2 = d [R1]+ d [R1 ◦ R1] . (139)

Applying the vec operator yields

dvec R2 = dvec R1 + 2D(vec R1)dvec R1. (140)

Replacing the differentials with the derivative of R2 with
respect to R1 gives

dvec R2

dvec R1
= Is2 + 2D(vec R1). (141)

Then, the derivative of R2 with respect to f becomes

dvec R2

dfT
= dvec R2

dvec R1

dvec R1

dfT
, (142)

which, using the expression above and recalling (129),
becomes

dvec R2

dfT
=

(
Is2 + 2D(vec R1)

)
(ZT ⊗ 1s). (143)

Similarly, we can obtain the sensitivity of R3 to f by
differentiating (138), resulting in

dR3 = dR1 + 3d (R1 ◦ R1)+ d (R1 ◦ R1 ◦ R1) . (144)

Applying the vec operator then gives

dvec R3 = dvec R1 + 6D(vec R1)dvec R1

+3D (vec(R1 ◦ R1)) dvec R1, (145)

where the differentials can be replaced with derivatives of
R3 with respect to R1, yielding

dvec R3

dvec R1
= Is2 + 6D(vec R1)+ 3D (vec(R1 ◦ R1)) . (146)

Given that

dvec R3

dfT
= dvec R3

dvec R1

dvec R1

dfT
, (147)
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and that the derivative of R1 with respect to f is (129), the
sensitivity of R3 to f is
dvec R3

dfT
=

[
Is2 + 6D(vec R1)+ 3D (vec(R1 ◦ R1))

]
(ZT ⊗ 1s ).

(148)

Cushing JM, Zhou Y (1994) The net reproductive value and stability
in matrix population models. Nat Resour Model 8:297–333

De Camino-Beck T, Lewis MA (2007) A new method for calculating
net reproductive rate from graph reduction with applications to the
control of invasive species. Bull Math Biol 69:1341–1354

Eaton JW, Mayer AJ (1953) The social biology of very high fertil-
ity among the hutterites: the demography of a unique population.
Hum Biol 25:206–264

Gurven M, Kaplan H (2007) Longevity among hunter-gatherers: a
cross-cultural examination. Popul Dev Rev 33:321–365

Haridas CV, Tuljapurkar S (2005) Elasticities in variable environ-
ments: properties and implications. Am Nat 166:481–495

Hartemink N, Missov TI, Caswell H (2017) Stochasticity, heterogene-
ity, and variance in longevity in human populations. Theor Popul
Biol 114:107–116

Henderson HV, Searle SR (1981) The vec-permutation matrix, the
vec operator and Kronecker products: a review. Linear Multilinear
Algebra 9:271–288
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