For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. ir. J.M. (Jasper) de Goeij

Associate Professor of Marine Benthic Ecology
Faculty of Science
Institute for Biodiversity and Ecosystem Dynamics

Visiting address
  • Science Park 904
  • Room number: C4.210
Postal address
  • Postbus 94240
    1090 GE Amsterdam
  • Profile

    Welcome!

    How can tropical coral reefs be so diverse and productive? And how do sponges make sure the coral reef can persist as biological hotspot? Sponges are indeed important animals in a variety of marine and freshwater ecosystems (they even occur in the canals of Amsterdam). Apart from their ecological significance, sponges are found to be interesting organisms in a wide variety of scientific fields. From an evolutionary point of view, they are the oldest known multicellular organism on Earth, more than 700 Million years old. Moreover, they show a striking resemblance to the human gastro-intestinal tract. From a biotechnological point of view, they are considered to be chemical factories; Most of the 15.000 known sponge species (there are only about 5.000 mammals on this planet) produce substances that can lead to the development of new medicines against cancer and HIV, new anti-biotics, food supplements and biomaterials.

    Jasper de Goeij working on the Caribbean reefs of Curaçao

    Sponges: from fundamental reserach to application

    In our group, we are interested in two main subjects: the functioning of highly productive ecosystems thriving in oligotrophic (nutrient-poor) waters and the physiology of sponges and their associated microbes. We try to be question-driven and use a wide variety of experimental approaches and techniques to answer our questions, from molecular- to cell- to ecosystem level. More important: We strongly emphasize the power of fundamental research as an innovative basis leading to application. This approach requires a close collaboration with (inter)national specialists in both science and commerce. Together with Dr Ronald Osinga from the Wageningen University, I'm co-owner of the research-driven Blue-Biotech company Porifarma BV (www.porifarma.com).

    Our model sponge: the marine, encrusting coral reef sponge Halisarca caerulea

    Sponges as animal model

     Sponges are a close collaboration with numerous microbes and are known as biotechnological 'milk-cows'. There is one problem, though: We are (yet) not able to grow them under controlled conditions, for example in artificial seawater aquaria. Our group was to first to collaborate with pathologists and cell biologists from the Maastricht University to discover how sponge cells are growing and being lost. In fact, sponges showed the fastest cell cycle of any multicellular organism found to date. The cell biology of sponges now gives the oppertuntity to determine the 'state' of a sponge: Is it growing, or in steady state, maybe regenerating? This helps us to understand and, ultimately, control the growth of sponges in aquaria. Sponges also show a striking resemblance to a human colon, which makes it an interesting animal model for cancer research and as an uptake system.

    Grandpa sponge: Sponge filter chamber (left) versus human colon (right)

    The coral reef as blueprint for sustainable aquaculture

    Per square meter, a coral reef produces more energy than most human factories are able to. The coral, however, occurs in tropical, oligotrophic waters, also known as the marine equivalent of a desert. Therefore, it has tight and very efficient recycling mechanisms that prevent energy nutrients to leak from the ecosystem. In other words: the system is highly productive, without leaking waste. This knowledge leads to create sustainable ways of aquaculture, the so-called Sustainable Integrated Ocean Farming (SIOF). We aim to understand the functioning of the natural coral reef ecosystem. Recently, we discovered how sponges are at the base of a recycling mechanism we refer to as the "Sponge Loop". The important role of sponges helps to better understand and protect coral reefs, which are in worldwide peril.

    Could this beautiful coral reef ecosystem be the blueprint for sustainable aquaculture?
  • Video & Media links
  • Publications

    2024

    • Campana, S., Arts, M. G. I., Díez-Vives, C., Mueller, B., Bang, C., Riesgo, A., Haas, A. F., Muyzer, G., & de Goeij, J. M. (2024). Sponges on shifting reefs: holobionts show similar molecular and physiological responses to coral versus macroalgal food. Frontiers in Marine Science, 11, Article 1298922. https://doi.org/10.3389/fmars.2024.1298922

    2023

    • Lange, K., Reynaud, S., de Goeij, J. M., & Ferrier-Pagès, C. (2023). The effects of dissolved organic matter supplements on the metabolism of corals under heat stress. Limnology and Oceanography. https://doi.org/10.1002/LNO.12456
    • van Hoytema, N., de Goeij, J. M., Kornder, N. A., El-Khaled, Y., van Oevelen, D., Rix, L., Cardini, U., Bednarz, V. N., Naumann, M. S., Al-Horani, F. A., & Wild, C. (2023). A carbon cycling model shows strong control of seasonality and importance of sponges on the functioning of a northern Red Sea coral reef. Coral reefs, 42(2), 367–381. https://doi.org/10.1007/s00338-022-02339-3 [details]
    • van Hoytema, N., de Goeij, J. M., Kornder, N. A., El-Khaled, Y., van Oevelen, D., Rix, L., Cardini, U., Bednarz, V. N., Naumann, M. S., Al-Horani, F. A., & Wild, C. (2023). Correction to: A carbon cycling model shows strong control of seasonality and importance of sponges on the functioning of a northern Red Sea coral reef. Coral reefs, 42, 383. Advance online publication. https://doi.org/10.1007/s00338-023-02353-z

    2022

    2021

    2020

    • Bart, M. C., de Kluijver, A., Hoetjes, S., Absalah, S., Mueller, B., Kenchington, E., Rapp, H. T., & de Goeij, J. M. (2020). Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Scientific Reports, 10, Article 17515. https://doi.org/10.1038/s41598-020-74670-0 [details]
    • Engelberts, J. P., Robbins, S. J., de Goeij, J. M., Aranda, M., Bell, S. C., & Webster, N. S. (2020). Characterization of a sponge microbiome using an integrative genome-centric approach. The ISME Journal, 14(5), 1100–1110. Advance online publication. https://doi.org/10.1038/s41396-020-0591-9 [details]
    • Lesser, M. P., Mueller, B., Pankey, M. S., Macartney, K. J., Slattery, M., & de Goeij, J. M. (2020). Depth‐dependent detritus production in the sponge, Halisarca caerulea. Limnology and Oceanography, 65(6), 1200-1216. Advance online publication. https://doi.org/10.1002/lno.11384 [details]
    • Rix, L., Ribes, M., Jahn, M. T., de Goeij, J. M., van Oevelen, D., Escrig, S., Meibom, A., & Hentschel, U. (2020). Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. The ISME Journal, 14(10), 2554–2567. https://www.nature.com/articles/s41396-020-0706-3 [details]

    2019

    • Achlatis, M., Pernice, M., Green, K., de Goeij, J. M., Guagliardo, P., Kilburn, M. R., Hoegh-Guldberg, O., & Dove, S. (2019). Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. Proceedings of the Royal Society B-Biological Sciences, 286(1916), Article 20192153. https://doi.org/10.1098/rspb.2019.2153 [details]
    • Bart, M. C., de Vet, S. J., de Bakker, D. M., Alexander, B. E., van Oevelen, D., van Loon, E. E., van Loon, J. J. W. A., & de Goeij, J. M. (2019). Spiculous skeleton formation in the freshwater sponge Ephydatia fluviatilis under hypergravity conditions. PeerJ, 6, Article e6055. https://doi.org/10.7717/peerj.6055 [details]
    • Gökalp, M., Wijgerde, T., Sarà, A., De Goeij, J. M., & Osinga, R. (2019). Development of an Integrated Mariculture for the Collagen-Rich Sponge Chondrosia reniformis. Marine Drugs, 17(1), Article 29. https://doi.org/10.3390/md17010029 [details]

    2018

    • Kenny, N. J., de Goeij, J. M., de Bakker, D. M., Whalen, C. G., Berezikov, E., & Riesgo, A. (2018). Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea. Marine Genomics, 37, 135-147. https://doi.org/10.1016/j.margen.2017.11.001 [details]
    • Rix, L., de Goeij, J. M., van Oevelen, D., Struck, U., Al-Horani, F. A., Wild, C., & Naumann, M. S. (2018). Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Marine Ecology Progress Series, 589, 85-96. https://doi.org/10.3354/meps12443 [details]
    • van Oevelen, D., Mueller, C. E., Lundälv, T., van Duyl, F. C., de Goeij, J. M., & Middelburg, J. J. (2018). Niche overlap between a cold-water coral and an associated sponge for isotopically-enriched particulate food sources. PLoS ONE, 13(3), Article e0194659. https://doi.org/10.1371/journal.pone.0194659 [details]

    2017

    • Rix, L., de Goeij, J. M., van Oevelen, D., Struck, U., Al-Horani, F. A., Wild, C., & Naumann, M. S. (2017). Differential recycling of coral and algal dissolved organic matter via the sponge loop. Functional Ecology, 31(3), 778-789. Advance online publication. https://doi.org/10.1111/1365-2435.12758 [details]
    • de Goeij, J. M., Lesser, M. P., & Pawlik, J. R. (2017). Nutrient Fluxes and Ecological Functions of Coral Reef Sponges in a Changing Ocean. In J. L. Carballo, & J. J. Bell (Eds.), Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization (pp. 373-410). Springer. https://doi.org/10.1007/978-3-319-59008-0_8 [details]

    2016

    2015

    2014

    • Alexander, B. E., Liebrand, K., Osinga, R., van der Geest, H. G., Admiraal, W., Cleutjens, J. P. M., Schutte, B., Verheyen, F., Ribes, M., van Loon, E., & de Goeij, J. M. (2014). Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS ONE, 9(10), e109486. Advance online publication. https://doi.org/10.1371/journal.pone.0109486 [details]
    • Mueller, B., de Goeij, J. M., Vermeij, M. J. A., Mulders, Y., van der Ent, E., Ribes, M., & van Duyl, F. C. (2014). Natural Diet of Coral-Excavating Sponges Consists Mainly of Dissolved Organic Carbon (DOC). PLoS ONE, 9(2), e90152. Advance online publication. https://doi.org/10.1371/journal.pone.0090152 [details]

    2013

    • de Goeij, J. M., van Oevelen, D., Vermeij, M. J. A., Osinga, R., Middelburg, J. J., de Goeij, A. F. P. M., & Admiraal, W. (2013). Surviving in a Marine Desert: The Sponge Loop Retains Resources Within Coral Reefs. Science, 342(6154), 108-110. Advance online publication. https://doi.org/10.1126/science.1241981 [details]

    2010

    • Hunting, E. R., de Goeij, J. M., Asselman, M., van Soest, R. W. M., & van der Geest, H. G. (2010). Degradation of mangrove-derived organic matter in mangrove associated sponges. Bulletin of Marine Science, 86(4), 871-877. https://doi.org/10.5343/bms.2010.1001 [details]
    • Hunting, E. R., de Goeij, J. M., van Soest, R. W. M., & van der Geest, H. G. (2010). Implications of mangrove-derived DOM for sponge community dynamics. In Euro ISRS symposium 2010: Reefs in a changing environment. 13-17 December, Wageningen.

    2009

    • de Goeij, J. M., de Kluijver, A., van Duyl, F. C., Vacelet, J., Wijffels, R. H., de Goeij, A. F. P. M., Cleutjens, J. P. M., & Schutte, B. (2009). Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. Journal of Experimental Biology, 212, 3892-3900. https://doi.org/10.1242/jeb.034561

    2008

    • de Goeij, J. M., Moodley, L., Houtekamer, M., Carballeira, N. M., & van Duyl, F. C. (2008). Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: Evidence for DOM-feeding. Limnology and Oceanography, 53(4), 1376-1386. https://doi.org/10.4319/lo.2008.53.4.1376
    • de Goeij, J. M., van den Berg, H., van Oostveen, M. M., & van Duyl, F. C. (2008). Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Marine Ecology - Progress Series, 357, 139-151. https://doi.org/10.3354/meps07403

    2007

    2003

    • Scheffers, S. R., de Goeij, J. M., van Duyl, F. C., & Bak, R. P. M. (2003). The cave-profiler: a simple tool to describe the 3-D structure of inaccessible coral reef cavities. Coral reefs, 22(1), 49-53. https://doi.org/10.1007/s00338-003-0285-6

    2021

    • Knowlton, N., Corcoran, E., Felis, T., Ferse, S. C. A., de Goeij, J. M., Grottoli, A. G., Harding, S. P., Kleypas, J., Mayfield, A. B., Miller, M. W., Obura, D., Osuka, K. E., Peixoto, R. S., Randall, C. J., Voolstra, C. R., Wells, S., & Wild, C. (2021). Rebuilding Coral Reefs: A Decadal Grand Challenge. International Coral Reef Society, Future Earth Coasts. https://doi.org/10.53642/NRKY9386 [details]

    2019

    • Campana, S., Demey, C., Busch, K., Hentschel, U., & de Goeij, J. M. (2019). Marine sponges maintain a stable microbiome in different coral-algal communities. Abstract from 3rd Gordon Research Conference on Animal-Microbial Symbioses, West Dover, Vermont, United States.

    2010

    • Hunting, E. R., de Goeij, J. M., van Soest, R. W. M., & van der Geest, H. G. (2010). Implications of mangrove-derived organic matter for songe community dynamics. 171. Abstract from ISRS symposium: Reefs in a changing environment, .

    Prize / grant

    • de Goeij, J. (2016). EU ERC Starting Grant (1,465,097 Euro).
    • de Goeij, J. (2010). NWO VENI grant (250,000 euro).

    Media appearance

    Talk / presentation

    • de Goeij, J. (speaker) (7-2-2014). Sponges are the intestines of coral reefs: From ecosystem to stem cells., University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Ageing, Groningen, The Netherlands..

    Others

    • de Goeij, J. (organiser), Hudspith, M. R. (organiser), Webster, N. S. (participant), Pernice, M. (participant), Rix, L. (participant) & Achlatis, M. (participant) (5-3-2018 - 9-3-2018). NanoSIMS and sponges, Perth. Workshop on NanoSIMS and sponges in Perth, Australia (organising a conference, workshop, ...).

    2009

    • de Goeij, J. M. (2009). Element cycling on tropical coral reefs: The cryptic carbon shunt revealed. Enschede: PrintPartners Ipskamp.

    2023

    • Lange, K., Reynaud, S., de Goeij, J. & Ferrier-Pagès, C. (27-9-2023). The effects of dissolved organic matter supplements on the metabolism of corals under heat stress. DRYAD. https://doi.org/10.5061/dryad.np5hqc00m
    • Kornder, N. A., Müller, B., de Goeij, J., Vermeij, M., Huisman, J., Cappelletto, J., Zalm, M. J. L. & Martinez, S. (14-4-2023). Thesis_Niklas-Kornder_Supplementary-data_Chapter2. Universiteit van Amsterdam. https://doi.org/10.21942/uva.22592962.v1
    • Kornder, N. A., de Goeij, J., Huisman, J., Vermeij, M., Müller, B., Esser, Y., Stoupin, D. & Leys, S. P. (12-4-2023). Thesis_Niklas-Kornder_Chapter3. Universiteit van Amsterdam. https://doi.org/10.21942/uva.22592956.v1
    • Kornder, N., Huisman, J., de Goeij, J., Vermeij, M., Rombouts, A. J., Barnes, W. J. & Riley, A. T. K. (12-4-2023). Thesis_Niklas-Kornder_Chapter4. Universiteit van Amsterdam. https://doi.org/10.21942/uva.22592536.v2
    • Kornder, N., Huisman, J., de Goeij, J. & Vermeij, M. (12-4-2023). Thesis_Niklas-Kornder_Chapter6. Universiteit van Amsterdam. https://doi.org/10.21942/uva.22592944.v1
    • Kornder, N., Huisman, J., de Goeij, J., Vermeij, M., Esser, Y., de Nooijer, L. J. & Webb, A. E. (12-4-2023). Thesis_Niklas-Kornder_Chapter5. Universiteit van Amsterdam. https://doi.org/10.21942/uva.22592905.v1

    2022

    • Müller, B., Brocke, H., Rohwer, F., Dittmar, T., Huisman, J., Vermeij, M. & de Goeij, J. (2022). Nocturnal dissolved organic matter release by turf algae and its role in the microbialization of reefs. DRYAD. https://doi.org/10.5061/dryad.1ns1rn8ww
    • Campana, S., Riesgo, A., Jongepier, E., Fuss, J., Muyzer, G. & de Goeij, J. M. (2022). Additional file 2 of Meta-transcriptomic comparison of two sponge holobionts feeding on coral- and macroalgal-dissolved organic matter. Springer Nature. https://doi.org/10.6084/m9.figshare.21251762.v1
    • Campana, S., Riesgo, A., Jongepier, E., Fuss, J., Muyzer, G. & de Goeij, J. M. (2022). Additional file 1 of Meta-transcriptomic comparison of two sponge holobionts feeding on coral- and macroalgal-dissolved organic matter. Springer Nature. https://doi.org/10.6084/m9.figshare.21251756.v1
    • Campana, S., Riesgo, A., Jongepier, E., Fuss, J., Muyzer, G. & de Goeij, J. M. (2022). Meta-transcriptomic comparison of two sponge holobionts feeding on coral- and macroalgal-dissolved organic matter. Springer Nature. https://doi.org/10.6084/m9.figshare.c.6225476.v1

    2021

    • Hudspith, M., Rix, L., Achlatis, M., Bougoure, J., Guagliardo, P., Clode, P. L., Webster, N. S., Muyzer, G., Pernice, M. & De Goeij, J. M. (2021). Subcellular view of host–microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan–microbe symbiosis. DRYAD. https://doi.org/10.5061/dryad.6hdr7sr0n

    2020

    • Achlatis, M., Pernicé, M., Green, K., De Goeij, J. M., Guagliardo, P., Kilburn, M. R., Hoegh-Guldberg, O. & Dove, S. (2020). Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. DRYAD. https://doi.org/10.5061/dryad.7wm37pvng
    • Absalah, S., Müller, B., Kenchington, E., Bart, M., de Kluijver, A., de Goeij, J. M., Hoetjes, S. & Rapp, H. (2020). (Table S1) Sponge biomass and natural isotopic ratios for incubated deep-sea sponge specimens. PANGAEA. https://doi.org/10.1594/pangaea.925076
    • Rapp, H., Absalah, S., Hoetjes, S., de Kluijver, A., de Goeij, J. M., Bart, M., Müller, B. & Kenchington, E. (2020). (Table S3) Relative abundance of each phospholipid fatty acid to the total PLFA content of each deep-sea sponge species and substrate. PANGAEA. https://doi.org/10.1594/pangaea.925078

    2018

    • Al-Horani, F. A., de Goeij, J. M., Wild, C., van Oevelen, D., Rix, L., Naumann, M. S. & Struck, U. (2018). Data from: Differential recycling of coral and algal dissolved organic matter via the sponge loop. DRYAD. https://doi.org/10.5061/dryad.5h0c1
    • van Oevelen, D., Mueller, C., Lundalv, T., van Duyl, F., de Goeij, J. & Middelburg, J. (2018). Data archive: Niche overlap between a cold-water coral and an associated sponge for isotopically-enriched particulate food sources. Zenodo. https://doi.org/10.5281/zenodo.1198189
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    • Porifarma B.V.
      CEO