For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.

Dr. B.T. (Ben) Martin

Faculty of Science
Institute for Biodiversity and Ecosystem Dynamics

Visiting address
  • Science Park 904
Postal address
  • Postbus 94240
    1090 GE Amsterdam
  • Profile

    I am Benjamin Martin an Assistant Professor at the Department of Theoretical and Computational Ecology at the University of Amsterdam. This is my University research page. Here you can find information on my previous and current research.

  • Publications

    2023

    • Bhattarai, B., Hilliard, B., Reeder, W. J., Budwig, R., Martin, B. T., Xing, T., & Tonina, D. (2023). Effect of surface hydraulics and salmon redd size on redd‐induced hyporheic exchange. Water Resources Research. https://doi.org/10.1029/2022WR033977
    • Bhattarai, B., Hilliard, B., Reeder, W. J., Budwig, R., Martin, B. T., Xing, T., & Tonina, D. (2023). The role of riverine bed roughness, egg pocket location, and egg pocket permeability on Salmonid Redd‐induced hyporheic flows. Water Resources Research, 59(11). https://doi.org/10.1029/2023WR035548
    • Fahimipour, A. K., Gil, M. A., Celis, M. R., Hein, G. F., Martin, B. T., & Hein, A. M. (2023). Wild animals suppress the spread of socially transmitted misinformation. Proceedings of the National Academy of Sciences of the United States of America, 120(14), e2215428120. https://doi.org/10.1073/pnas.2215428120
    • Hilliard, B., Budwig, R., Skifton, R. S., Durgesh, V., Reeder, W. J., Bhattarai, B., Martin, B. T., Xing, T., & Tonina, D. (2023). Measuring porous media velocity fields and grain bed architecture with a quantitative PLIF-based technique. Measurement Science and Technology, 34(12), Article 125805. https://doi.org/10.1088/1361-6501/acfb2b

    2022

    • Fitzgerald, A. M., & Martin, B. T. (2022). Quantification of thermal impacts across freshwater life stages to improve temperature management for anadromous salmonids. Conservation Physiology, 10(1), Article coac013. https://doi.org/10.1093/conphys/coac013
    • Fitzgerald, A. M., Boughton, D. A., Fuller, J., John, S. N., Martin, B. T., Harrison, L. R., & Mantua, N. J. (2022). Physical and biological constraints on the capacity for life-history expression of anadromous salmonids: an Eel River, California, case study. Canadian Journal of Fisheries and Aquatic Sciences, 79(7), 1023-1041. https://doi.org/10.1139/cjfas-2021-0229
    • Lo, V. K., Martin, B. T., Danner, E. M., Cocherell, D. E., Cech, J. J., & Fangue, N. A. (2022). The effect of temperature on specific dynamic action of juvenile fall-run Chinook salmon, Oncorhynchus tshawytscha. Conservation Physiology, 10(1), Article coac067. https://doi.org/10.1093/conphys/coac067
    • Martin, B. T., Gil, M. A., Fahimipour, A. K., & Hein, A. M. (2022). Informational constraints on predator–prey interactions. Oikos, 2022(10), Article e08143. https://doi.org/10.1111/oik.08143

    2021

    • Apgar, T. M., Merz, J. E., Martin, B. T., & Palkovacs, E. P. (2021). Alternative migratory strategies are widespread in subyearling Chinook salmon. Ecology of Freshwater Fish, 30(1), 125-139. https://doi.org/10.1111/eff.12570
    • Del Rio, A. M., Mukai, G. N., Martin, B. T., Johnson, R. C., Fangue, N. A., Israel, J. A., & Todgham, A. E. (2021). Differential sensitivity to warming and hypoxia during development and long-term effects of developmental exposure in early life stage Chinook salmon. Conservation Physiology, 9(1), Article coab054. https://doi.org/10.1093/conphys/coab054
    • FitzGerald, A. M., John, S. N., Apgar, T. M., Mantua, N. J., & Martin, B. T. (2021). Quantifying thermal exposure for migratory riverine species: Phenology of Chinook salmon populations predicts thermal stress. Global Change Biology, 27(3), 536-549. https://doi.org/10.1111/gcb.15450 [details]

    2020

    • Hein, A. M., & Martin, B. T. (2020). Information limitation and the dynamics of coupled ecological systems. Nature Ecology & Evolution, 4(1), 82-90. https://doi.org/10.1038/s41559-019-1008-x [details]
    • Hein, A. M., Altshuler, D. L., Cade, D. E., Liao, J. C., Martin, B. T., & Taylor, G. K. (2020). An Algorithmic Approach to Natural Behavior. Current Biology, 30(11), R663-R675. https://doi.org/10.1016/j.cub.2020.04.018 [details]
    • Martin, B. T., Dudley, P. N., Kashef, N. S., Stafford, D. M., Reeder, W. J., Tonina, D., Del Rio, A. M., Scott Foott, J., & Danner, E. M. (2020). The biophysical basis of thermal tolerance in fish eggs. Proceedings of the Royal Society B: Biological Sciences, 287(1937), Article 20201550. https://doi.org/10.1098/rspb.2020.1550 [details]

    2019

    • Friedman, W. R., Martin, B. T., Wells, B. K., Warzybok, P., Michel, C. J., Danner, E. M., & Lindley, S. T. (2019). Modeling composite effects of marine and freshwater processes on migratory species. Ecosphere, 10(7), Article e02743. https://doi.org/10.1002/ecs2.2743
    • Hamda, N. T., Martin, B., Poletto, J. B., Cocherell, D. E., Fangue, N. A., Van Eenennaam, J., Mora, E. A., & Danner, E. (2019). Applying a simplified energy-budget model to explore the effects of temperature and food availability on the life history of green sturgeon (Acipenser medirostris). Ecological Modelling, 395, 1-10. https://doi.org/10.1016/j.ecolmodel.2019.01.005

    2018

    • Martin, B. T., Munch, S. B., & Hein, A. M. (2018). Reverse-engineering ecological then from data. Proceedings of the Royal Society B-Biological Sciences, 285(1878). https://doi.org/10.1098/rspb.2018.0422
    • Poletto, J. B., Martin, B., Danner, E., Baird, S. E., Cocherell, D. E., Hamda, N., Cech, J. J., & Fangue, N. A. (2018). Assessment of multiple stressors on the growth of larval green sturgeon Acipenser medirostris: implications for recruitment of early life-history stages. Journal of Fish Biology, 93(5), 952-960. https://doi.org/10.1111/jfb.13805

    2017

    • Martin, B. T., Heintz, R., Danner, E. M., & Nisbet, R. M. (2017). Integrating lipid storage into general representations of fish energetics. Journal of Animal Ecology, 86(4), 812-825. https://doi.org/10.1111/1365-2656.12667
    • Martin, B. T., Pike, A., John, S. N., Hamda, N., Roberts, J., Lindley, S. T., & Danner, E. M. (2017). Phenomenological vs. biophysical models of thermal stress in aquatic eggs. Ecology Letters, 20(1), 50-59. https://doi.org/10.1111/ele.12705

    2016

    • Martin, B. T., Czesny, S., Wahl, D. H., & Grimm, V. (2016). Scale-dependent role of demography and dispersal on the distribution of populations in heterogeneous landscapes. Oikos, 125(5), 667-673. https://doi.org/10.1111/oik.02345
    • Nisbet, R. M., Martin, B. T., & de Roos, A. M. (2016). Integrating ecological insight derived from individual-based simulations and physiologically structured population models. Ecological Modelling, 326, 101-112. Advance online publication. https://doi.org/10.1016/j.ecolmodel.2015.08.013 [details]

    2015

    • Fiechter, J., Huff, D. D., Martin, B. T., Jackson, D. W., Edwards, C. A., Rose, K. A., Curchitser, E. N., Hedstrom, K. S., Lindley, S. T., & Wells, B. K. (2015). Environmental conditions impacting juvenile Chinook salmon growth off central California: An ecosystem model analysis. Geophysical Research Letters, 42(8), 2910-2917. https://doi.org/10.1002/2015GL063046
    • Martin, B. T., Nisbet, R. M., Pike, A., Michel, C. J., & Danner, E. M. (2015). Sport science for salmon and other species: ecological consequences of metabolic power constraints. Ecology Letters, 18(6), 535-544. https://doi.org/10.1111/ele.12433

    2014

    • Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston, A. S. A., Liu, C., Martin, B. T., Meli, M., Radchuk, V., Thorbek, P., & Railsback, S. F. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129-139. https://doi.org/10.1016/j.ecolmodel.2014.01.018
    • Jager, T., Barsi, A., Hamda, N. T., Martin, B. T., Zimmer, E. I., & Ducrot, V. (2014). Dynamic energy budgets in population ecotoxicology: Applications and outlook. Ecological Modelling, 280, 140-147. https://doi.org/10.1016/j.ecolmodel.2013.06.024
    • Martin, B., Jager, T., Nisbet, R. M., Preuss, T. G., & Grimm, V. (2014). Limitations of extrapolating toxic effects on reproduction to the population level. Ecological Applications, 24(8), 1972-1983. https://doi.org/10.1890/14-0656.1

    2013

    • Grimm, V., & Martin, B. T. (2013). Mechanistic effect modeling for ecological risk assessment: where to go from here? Integrated Environmental Assessment and Management, 9(3), e58-e63. https://doi.org/10.1002/ieam.1423
    • Jager, T., Martin, B. T., & Zimmer, E. I. (2013). DEBkiss or the quest for the simplest generic model of animal life history. Journal of Theoretical Biology, 328, 9-18. https://doi.org/10.1016/j.jtbi.2013.03.011
    • Martin, B. T., Jager, T., Nisbet, R. M., Preuss, T. G., & Grimm, V. (2013). Predicting Population Dynamics from the Properties of Individuals: A Cross-Level Test of Dynamic Energy Budget Theory. American Naturalist, 181(4), 506-519. https://doi.org/10.1086/669904
    • Martin, B. T., Jager, T., Nisbet, R. M., Preuss, T. G., Hammers-Wirtz, M., & Grimm, V. (2013). Extrapolating ecotoxicological effects from individuals to populations: a generic approach based on Dynamic Energy Budget theory and individual-based modeling. Ecotoxicology, 22(3), 574-583. https://doi.org/10.1007/s10646-013-1049-x
    • Sibly, R. M., Grimm, V., Martin, B. T., Johnston, A. S. A., Kulakowska, K., Topping, C. J., Calow, P., Nabe-Nielsen, J., Thorbek, P., & DeAngelis, D. L. (2013). Representing the acquisition and use of energy by individuals in agent-based models of animal populations. Methods in Ecology and Evolution, 4(2), 151-161. https://doi.org/10.1111/2041-210x.12002

    2012

    • Martin, B. T., Zimmer, E. I., Grimm, V., & Jager, T. (2012). Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation. Methods in Ecology and Evolution, 3(2), 445-449. https://doi.org/10.1111/j.2041-210X.2011.00168.x

    2022

    • FitzGerald, A. & Martin, B. (2022). Quantification of thermal impacts across freshwater life stages to improve temperature management for anadromous salmonids. DRYAD. https://doi.org/10.5061/dryad.cjsxksn7b

    2021

    • FitzGerald, A., Boughton, D., Fuller, J., John, S., Martin, B., Harrison, L. & Mantua, N. (2021). Physical and biological constraints on the capacity for life-history expression of anadromous salmonids: an Eel River, California, case study. DRYAD. https://doi.org/10.5061/dryad.ksn02v74x

    2020

    • FitzGerald, A., John, S., Apgar, T., Mantua, N. & Martin, B. (2020). Quantifying thermal exposure for migratory riverine species: phenology of Chinook salmon populations predicts thermal stress. DRYAD. https://doi.org/10.5061/dryad.n5tb2rbtq
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Ancillary activities
    No ancillary activities