Zhiming Zhao is an associate professor in the System and Network Engineering ( SNE) group at University of Amsterdam ( UvA). He obtained his bachelor's and master's degrees in Computer Science from Nanjing Normal University ( NJNU) and East China Normal University ( ECNU) in 1993 and 1996 in China, respectively. He obtained his PhD in Computer Science from University of Amsterdam (UvA) in 2004. He is strongly interested in advanced computing and network technologies, time-critical and data-intensive systems, Cloud computing, scientific workflows and software agents. He coordinated the project SWITCH (Software Workbench for interactive time-critical and highly self-adaptive cloud applications). I led the Data for Science theme in the environmental science cluster project ENVRIplus and the technical development work package in its follow-up project ENVRI-FAIR. He also lead the UvA effort in ARTICONF, CLARIFY, BLUECLOUD, and VRE4EIC projects. I am also the technical manager of the LifeWatch ERIC Virtual Lab & Innovation Centre (VLIC) in Amsterdam.
 Wang, Y., Tripathi, S., Farshidi, S., & Zhao, Z. (2025). D-VRE: From a Jupyter-enabled Private Research Environment to Decentralized Collaborative Research Ecosystem. Blockchain: Research and Applications, 6(1), Article 100244. https://doi.org/10.1016/j.bcra.2024.100244 [details]
Wang, Y., Tripathi, S., Farshidi, S., & Zhao, Z. (2025). D-VRE: From a Jupyter-enabled Private Research Environment to Decentralized Collaborative Research Ecosystem. Blockchain: Research and Applications, 6(1), Article 100244. https://doi.org/10.1016/j.bcra.2024.100244 [details] Cheng, L., Chen, X., & Zhao, Z. (2024). Preface of special issue on Artificial Intelligence for time-critical computing systems. Future Generation Computer Systems, 159, 102-104. https://doi.org/10.1016/j.future.2024.05.011 [details]
Cheng, L., Chen, X., & Zhao, Z. (2024). Preface of special issue on Artificial Intelligence for time-critical computing systems. Future Generation Computer Systems, 159, 102-104. https://doi.org/10.1016/j.future.2024.05.011 [details] Cheng, L., Wang, Y., Cheng, F., Liu, C., Zhao, Z., & Wang, Y. (2024). A Deep Reinforcement Learning-Based Preemptive Approach for Cost-Aware Cloud Job Scheduling. IEEE Transactions on Sustainable Computing, 9(3), 422-432. https://doi.org/10.1109/TSUSC.2023.3303898 [details]
Cheng, L., Wang, Y., Cheng, F., Liu, C., Zhao, Z., & Wang, Y. (2024). A Deep Reinforcement Learning-Based Preemptive Approach for Cost-Aware Cloud Job Scheduling. IEEE Transactions on Sustainable Computing, 9(3), 422-432. https://doi.org/10.1109/TSUSC.2023.3303898 [details] Hou, S., Wang, Y., & Zhao, Z. (2024). CrowdAL: Towards a Blockchain-empowered Active Learning System in Crowd Data Labeling. In EScience '24 proceedings: 2024 IEEE 20th International Conference on e-Science (e-Science) : September 16-20, 2024, Osaka, Japan (pp. 299-300). IEEE. https://doi.org/10.1109/e-science62913.2024.10678683 [details]
Hou, S., Wang, Y., & Zhao, Z. (2024). CrowdAL: Towards a Blockchain-empowered Active Learning System in Crowd Data Labeling. In EScience '24 proceedings: 2024 IEEE 20th International Conference on e-Science (e-Science) : September 16-20, 2024, Osaka, Japan (pp. 299-300). IEEE. https://doi.org/10.1109/e-science62913.2024.10678683 [details] Jiang, W., Chen, K., Liang, Z., Luo, T., Yue, G., Zhao, Z., Song, W., Zhao, L., & Wen, J. (2024). HT-RCM: Hashimoto's Thyroiditis Ultrasound Image Classification Model Based on Res-FCT and Res-CAM. IEEE Journal of Biomedical and Health Informatics, 28(2), 941-951. https://doi.org/10.1109/JBHI.2023.3331944 [details]
Jiang, W., Chen, K., Liang, Z., Luo, T., Yue, G., Zhao, Z., Song, W., Zhao, L., & Wen, J. (2024). HT-RCM: Hashimoto's Thyroiditis Ultrasound Image Classification Model Based on Res-FCT and Res-CAM. IEEE Journal of Biomedical and Health Informatics, 28(2), 941-951. https://doi.org/10.1109/JBHI.2023.3331944 [details] Jiang, W., Luo, T., Liang, Z., Chen, K., He, J., Zhao, Z., Wen, J., Zhao, L., & Song, W. (2024). FBENet: Feature-Level Boosting Ensemble Network for Hashimoto’s Thyroiditis Ultrasound Image Classification. IEEE Journal of Biomedical and Health Informatics, 28(9), 5360–5369. https://doi.org/10.1109/jbhi.2024.3414389 [details]
Jiang, W., Luo, T., Liang, Z., Chen, K., He, J., Zhao, Z., Wen, J., Zhao, L., & Song, W. (2024). FBENet: Feature-Level Boosting Ensemble Network for Hashimoto’s Thyroiditis Ultrasound Image Classification. IEEE Journal of Biomedical and Health Informatics, 28(9), 5360–5369. https://doi.org/10.1109/jbhi.2024.3414389 [details] Krishnasamy, A., Wang, Y., & Zhao, Z. (2024). A Collaborative Framework for Facilitating Federated Learning among Jupyter Users. In EScience '24 proceedings: 2024 IEEE 20th International Conference on e-Science (e-Science) : September 16-20, 2024, Osaka, Japan (pp. 305-306). IEEE. https://doi.org/10.1109/e-science62913.2024.10678679 [details]
Krishnasamy, A., Wang, Y., & Zhao, Z. (2024). A Collaborative Framework for Facilitating Federated Learning among Jupyter Users. In EScience '24 proceedings: 2024 IEEE 20th International Conference on e-Science (e-Science) : September 16-20, 2024, Osaka, Japan (pp. 305-306). IEEE. https://doi.org/10.1109/e-science62913.2024.10678679 [details] Li, N., Qi, Y., Li, C., & Zhao, Z. (2024). Active Learning for Data Quality Control: A Survey. Journal of Data and Information Quality, 16(2), 1–45. https://doi.org/10.1145/3663369
Li, N., Qi, Y., Li, C., & Zhao, Z. (2024). Active Learning for Data Quality Control: A Survey. Journal of Data and Information Quality, 16(2), 1–45. https://doi.org/10.1145/3663369 Pan, R., Shi, Z., Belloum, A., & Zhao, Z. (2024). Operating ZKPs on Blockchain: A Performance Analysis Based on Hyperledger Fabric. In 2024 IEEE International Conference on Decentralized Applications and Infrastructures: DAPPS 2024 : proceedings : 15-18 July 2024, Shanghai, China (pp. 69-78). IEEE Computer Society. https://doi.org/10.1109/DAPPS61106.2024.00018 [details]
Pan, R., Shi, Z., Belloum, A., & Zhao, Z. (2024). Operating ZKPs on Blockchain: A Performance Analysis Based on Hyperledger Fabric. In 2024 IEEE International Conference on Decentralized Applications and Infrastructures: DAPPS 2024 : proceedings : 15-18 July 2024, Shanghai, China (pp. 69-78). IEEE Computer Society. https://doi.org/10.1109/DAPPS61106.2024.00018 [details] Petzold, A., Bundke, U., Hienola, A., Laj, P., Lund Myhre, C., Vermeulen, A., Adamaki, A., Kutsch, W., Thouret, V., Boulanger, D., Fiebig, M., Stocker, M., Zhao, Z., & Asmi, A. (2024). Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science. Atmospheric Chemistry and Physics, 24(9), 5369-5388. https://doi.org/10.5194/acp-24-5369-2024 [details]
Petzold, A., Bundke, U., Hienola, A., Laj, P., Lund Myhre, C., Vermeulen, A., Adamaki, A., Kutsch, W., Thouret, V., Boulanger, D., Fiebig, M., Stocker, M., Zhao, Z., & Asmi, A. (2024). Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science. Atmospheric Chemistry and Physics, 24(9), 5369-5388. https://doi.org/10.5194/acp-24-5369-2024 [details] Song, Y., Xin, R., Chen, P., Zhang, R., Chen, J., & Zhao, Z. (2024). Autonomous selection of the fault classification models for diagnosing microservice applications. Future Generation Computer Systems, 153, 326-339. https://doi.org/10.1016/j.future.2023.12.005 [details]
Song, Y., Xin, R., Chen, P., Zhang, R., Chen, J., & Zhao, Z. (2024). Autonomous selection of the fault classification models for diagnosing microservice applications. Future Generation Computer Systems, 153, 326-339. https://doi.org/10.1016/j.future.2023.12.005 [details] Wang, Y., Kanwal, N., Engan, K., Rong, C., Grosso, P., & Zhao, Z. (2024). PriCE: Privacy-Preserving and Cost-Effective Scheduling for Parallelizing the Large Medical Image Processing Workflow over Hybrid Clouds. In J. Carretero, S. Shende, J. Garcia-Blas, I. Brandic, K. Olcoz, & M. Schreiber (Eds.), Euro-Par 2024: Parallel Processing: 30th European Conference on Parallel and Distributed Processing, Madrid, Spain, August 26–30, 2024 : proceedings (Vol. I, pp. 210-224). (Lecture Notes in Computer Science; Vol. 14801), (Advanced Research in Computing and Software Science). Springer. https://doi.org/10.1007/978-3-031-69577-3_15 [details]
Wang, Y., Kanwal, N., Engan, K., Rong, C., Grosso, P., & Zhao, Z. (2024). PriCE: Privacy-Preserving and Cost-Effective Scheduling for Parallelizing the Large Medical Image Processing Workflow over Hybrid Clouds. In J. Carretero, S. Shende, J. Garcia-Blas, I. Brandic, K. Olcoz, & M. Schreiber (Eds.), Euro-Par 2024: Parallel Processing: 30th European Conference on Parallel and Distributed Processing, Madrid, Spain, August 26–30, 2024 : proceedings (Vol. I, pp. 210-224). (Lecture Notes in Computer Science; Vol. 14801), (Advanced Research in Computing and Software Science). Springer. https://doi.org/10.1007/978-3-031-69577-3_15 [details] Xin, R., Chen, P., Grosso, P., & Zhao, Z. (2024). A fine-grained robust performance diagnosis framework for run-time cloud applications. Future Generation Computer Systems, 155, 300-311. https://doi.org/10.1016/j.future.2024.02.014 [details]
Xin, R., Chen, P., Grosso, P., & Zhao, Z. (2024). A fine-grained robust performance diagnosis framework for run-time cloud applications. Future Generation Computer Systems, 155, 300-311. https://doi.org/10.1016/j.future.2024.02.014 [details] Yuan, S., Chen, J., Jiang, W., Zhao, Z., & Guo, S. (2024). LHNetV2: A Balanced Low-Cost Hybrid Network for Single Image Dehazing. IEEE Transactions on Multimedia, 26, 8197-8209. https://doi.org/10.1109/tmm.2024.3377133 [details]
Yuan, S., Chen, J., Jiang, W., Zhao, Z., & Guo, S. (2024). LHNetV2: A Balanced Low-Cost Hybrid Network for Single Image Dehazing. IEEE Transactions on Multimedia, 26, 8197-8209. https://doi.org/10.1109/tmm.2024.3377133 [details] Zhu, P., Li, N., & Zhao, Z. (2024). Retrieval-augmented Query Reformulation for Heterogeneous Research Asset Retrieval in Virtual Research Environment. In WWW '24 Companion: Companion proceedings of the ACM Web Conference 2024 : May 13-17, 2024, Singapore, Singapore (pp. 907–910). The Association for Computing Machinery. https://doi.org/10.1145/3589335.3651553 [details]
Zhu, P., Li, N., & Zhao, Z. (2024). Retrieval-augmented Query Reformulation for Heterogeneous Research Asset Retrieval in Virtual Research Environment. In WWW '24 Companion: Companion proceedings of the ACM Web Conference 2024 : May 13-17, 2024, Singapore, Singapore (pp. 907–910). The Association for Computing Machinery. https://doi.org/10.1145/3589335.3651553 [details] van de Kamp, R., Bakker, K., & Zhao, Z. (2024). Paving the Path Towards Platform Engineering Using a Comprehensive Reference Model. In T. Prince Sales, S. de Kinderen, H. A. Proper, L. Pufahl, D. Karastoyanova, & M. van Sinderen (Eds.), Enterprise Design, Operations, and Computing. EDOC 2023 Workshops: IDAMS, iRESEARCH, MIDas4CS, SoEA4EE, EDOC Forum, Demonstrations Track and Doctoral Consortium, Groningen, The Netherlands, October 30–November 3, 2023 : revised selected papers (pp. 177–193). (Lecture Notes in Business Information Processing; Vol. 498). Springer. https://doi.org/10.1007/978-3-031-54712-6_11 [details]
van de Kamp, R., Bakker, K., & Zhao, Z. (2024). Paving the Path Towards Platform Engineering Using a Comprehensive Reference Model. In T. Prince Sales, S. de Kinderen, H. A. Proper, L. Pufahl, D. Karastoyanova, & M. van Sinderen (Eds.), Enterprise Design, Operations, and Computing. EDOC 2023 Workshops: IDAMS, iRESEARCH, MIDas4CS, SoEA4EE, EDOC Forum, Demonstrations Track and Doctoral Consortium, Groningen, The Netherlands, October 30–November 3, 2023 : revised selected papers (pp. 177–193). (Lecture Notes in Business Information Processing; Vol. 498). Springer. https://doi.org/10.1007/978-3-031-54712-6_11 [details] Christou, V., Wang, Y., & Zhao, Z. (2023). Towards a Knowledge Graph Enhanced Automation and Collaboration Framework for Digital Twins. In 2023 IEEE 19th International Conference on e-Science: (e-Science) : October 9-14, 2023, Limassol, Cyprus : proceedings (pp. 465-466). Article 62 IEEE. https://doi.org/10.1109/e-Science58273.2023.10254845 [details]
Christou, V., Wang, Y., & Zhao, Z. (2023). Towards a Knowledge Graph Enhanced Automation and Collaboration Framework for Digital Twins. In 2023 IEEE 19th International Conference on e-Science: (e-Science) : October 9-14, 2023, Limassol, Cyprus : proceedings (pp. 465-466). Article 62 IEEE. https://doi.org/10.1109/e-Science58273.2023.10254845 [details] Farshidi, S., Liao, X., Li, N., Goldfarb, D., Magagna, B., Stocker, M., Jeffery, K., Thijsse, P., Pichot, C., Petzold, A., & Zhao, Z. (2023). Knowledge sharing and discovery across heterogeneous research infrastructures. Open Research Europe, 1, Article 68. https://doi.org/10.12688/openreseurope.13677.3 [details]
Farshidi, S., Liao, X., Li, N., Goldfarb, D., Magagna, B., Stocker, M., Jeffery, K., Thijsse, P., Pichot, C., Petzold, A., & Zhao, Z. (2023). Knowledge sharing and discovery across heterogeneous research infrastructures. Open Research Europe, 1, Article 68. https://doi.org/10.12688/openreseurope.13677.3 [details] Kontomaris, C., Wang, Y., & Zhao, Z. (2023). CWL-FLOps: A Novel Method for Federated Learning Operations at Scale. In 2023 IEEE 19th International Conference on e-Science: (e-Science) : October 9-14, 2023, Limassol, Cyprus : proceedings (pp. 479-480). Article 69 IEEE. https://doi.org/10.1109/e-Science58273.2023.10254788 [details]
Kontomaris, C., Wang, Y., & Zhao, Z. (2023). CWL-FLOps: A Novel Method for Federated Learning Operations at Scale. In 2023 IEEE 19th International Conference on e-Science: (e-Science) : October 9-14, 2023, Limassol, Cyprus : proceedings (pp. 479-480). Article 69 IEEE. https://doi.org/10.1109/e-Science58273.2023.10254788 [details] La Marra, M., Blanson Henkemans, D., Titocci, J., Koulouzis, S., Rosati, I., & Zhao, Z. (2023). Integrating R in a distributed scientific workflow via a Jupyter-based Environment. In 2023 IEEE 19th International Conference on e-Science: (e-Science) : October 9-14, 2023, Limassol, Cyprus : proceedings (pp. 481-482). Article 70 IEEE. https://doi.org/10.1109/e-Science58273.2023.10254945 [details]
La Marra, M., Blanson Henkemans, D., Titocci, J., Koulouzis, S., Rosati, I., & Zhao, Z. (2023). Integrating R in a distributed scientific workflow via a Jupyter-based Environment. In 2023 IEEE 19th International Conference on e-Science: (e-Science) : October 9-14, 2023, Limassol, Cyprus : proceedings (pp. 481-482). Article 70 IEEE. https://doi.org/10.1109/e-Science58273.2023.10254945 [details] Launet, L., Wang, Y., Colomer, A., Igual, J., Pulgarín-Ospina, C., Koulouzis, S., Bianchi, R., Mosquera-Zamudio, A., Monteagudo, C., Naranjo, V., & Zhao, Z. (2023). Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions. Applied Sciences, 13(2), Article 919. https://doi.org/10.3390/app13020919 [details]
Launet, L., Wang, Y., Colomer, A., Igual, J., Pulgarín-Ospina, C., Koulouzis, S., Bianchi, R., Mosquera-Zamudio, A., Monteagudo, C., Naranjo, V., & Zhao, Z. (2023). Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions. Applied Sciences, 13(2), Article 919. https://doi.org/10.3390/app13020919 [details] Li, N., Zhang, Y., & Zhao, Z. (2023). A Dense Retrieval System and Evaluation Dataset for Scientific Computational Notebooks. In 2023 IEEE 19th International Conference on e-Science: (e-Science) : October 9-14, 2023, Limassol, Cyprus : proceedings (pp. 179-188). Article 19 IEEE. https://doi.org/10.1109/e-Science58273.2023.10254859 [details]
Li, N., Zhang, Y., & Zhao, Z. (2023). A Dense Retrieval System and Evaluation Dataset for Scientific Computational Notebooks. In 2023 IEEE 19th International Conference on e-Science: (e-Science) : October 9-14, 2023, Limassol, Cyprus : proceedings (pp. 179-188). Article 19 IEEE. https://doi.org/10.1109/e-Science58273.2023.10254859 [details] Liu, H., Chen, P., Ouyang, X., Gao, H., Yan, B., Grosso, P., & Zhao, Z. (2023). Robustness challenges in Reinforcement Learning based time-critical cloud resource scheduling: A Meta-Learning based solution. Future Generation Computer Systems, 146, 18-33. https://doi.org/10.1016/j.future.2023.03.029 [details]
Liu, H., Chen, P., Ouyang, X., Gao, H., Yan, B., Grosso, P., & Zhao, Z. (2023). Robustness challenges in Reinforcement Learning based time-critical cloud resource scheduling: A Meta-Learning based solution. Future Generation Computer Systems, 146, 18-33. https://doi.org/10.1016/j.future.2023.03.029 [details] Liu, H., Oudejans, M., Xin, R., Grosso, P., & Zhao, Z. (2023). A Performance-Adaptive and Time-Monitored Autonomous Ticket Booking Service in Cloud. In 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE): 19-21 June, 2023, Helsinki-Espoo, Finland : proceedings (pp. 940-945). IEEE. https://doi.org/10.1109/ISIE51358.2023.10228152 [details]
Liu, H., Oudejans, M., Xin, R., Grosso, P., & Zhao, Z. (2023). A Performance-Adaptive and Time-Monitored Autonomous Ticket Booking Service in Cloud. In 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE): 19-21 June, 2023, Helsinki-Espoo, Finland : proceedings (pp. 940-945). IEEE. https://doi.org/10.1109/ISIE51358.2023.10228152 [details] Liu, H., Xin, R., Chen, P., Gao, H., Grosso, P., & Zhao, Z. (2023). Robust-PAC time-critical workflow offloading in edge-to-cloud continuum among heterogeneous resources. Journal of Cloud Computing, 12, Article 58. https://doi.org/10.1186/s13677-023-00434-6 [details]
Liu, H., Xin, R., Chen, P., Gao, H., Grosso, P., & Zhao, Z. (2023). Robust-PAC time-critical workflow offloading in edge-to-cloud continuum among heterogeneous resources. Journal of Cloud Computing, 12, Article 58. https://doi.org/10.1186/s13677-023-00434-6 [details] Rito Lima, I., Filipe, V., Marinho, C., Ulisses, A., Chakravorty, A., Hristov, A., Saurabh, N., Zhao, Z., Xin, R., & Prodan, R. (2023). ARTICONF decentralized social media platform for democratic crowd journalism. Social Network Analysis and Mining, 13, Article 116. https://doi.org/10.1007/s13278-023-01110-y [details]
Rito Lima, I., Filipe, V., Marinho, C., Ulisses, A., Chakravorty, A., Hristov, A., Saurabh, N., Zhao, Z., Xin, R., & Prodan, R. (2023). ARTICONF decentralized social media platform for democratic crowd journalism. Social Network Analysis and Mining, 13, Article 116. https://doi.org/10.1007/s13278-023-01110-y [details] Shi, Z., de Laat, C., Grosso, P., & Zhao, Z. (2023). Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges. IEEE Communications Surveys and Tutorials, 25(1), 497-537. https://doi.org/10.1109/COMST.2022.3222403 [details]
Shi, Z., de Laat, C., Grosso, P., & Zhao, Z. (2023). Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges. IEEE Communications Surveys and Tutorials, 25(1), 497-537. https://doi.org/10.1109/COMST.2022.3222403 [details] Tabatabaei, Z., Wang, Y., Colomer, A., Oliver Moll, J., Zhao, Z., & Naranjo, V. (2023). WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval. Bioengineering, 10(10), Article 1144. https://doi.org/10.3390/bioengineering10101144 [details]
Tabatabaei, Z., Wang, Y., Colomer, A., Oliver Moll, J., Zhao, Z., & Naranjo, V. (2023). WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval. Bioengineering, 10(10), Article 1144. https://doi.org/10.3390/bioengineering10101144 [details] Wang, Y., Janse, N., Bianchi, R., Koulouzis, S., & Zhao, Z. (2023). Towards a Service-based Adaptable Data Layer for Cloud Workflows. In H. Shahriar, Y. Teranishi, A. Cuzzocrea, M. Sharmin, D. Towey, A. K. M. J. A. Majumder, H. Kashiwazaki, J.-J. Yang, M. Takemoto, N. Sakib, R. Banno, & S. I. Ahamed (Eds.), 2023 IEEE 47th Annual Computers, Software, and Applications Conference: 27-29 June 2023, Torino, Italy : proceedings (pp. 904-911). (COMPSAC; Vol. 2023). IEEE Computer Society. https://doi.org/10.1109/COMPSAC57700.2023.00121 [details]
Wang, Y., Janse, N., Bianchi, R., Koulouzis, S., & Zhao, Z. (2023). Towards a Service-based Adaptable Data Layer for Cloud Workflows. In H. Shahriar, Y. Teranishi, A. Cuzzocrea, M. Sharmin, D. Towey, A. K. M. J. A. Majumder, H. Kashiwazaki, J.-J. Yang, M. Takemoto, N. Sakib, R. Banno, & S. I. Ahamed (Eds.), 2023 IEEE 47th Annual Computers, Software, and Applications Conference: 27-29 June 2023, Torino, Italy : proceedings (pp. 904-911). (COMPSAC; Vol. 2023). IEEE Computer Society. https://doi.org/10.1109/COMPSAC57700.2023.00121 [details] Wang, Y., Kanwal, N., Engan, K., Rong, C., & Zhao, Z. (2023). Towards a Privacy-Preserving Distributed Cloud Service for Preprocessing Very Large Medical Images. In C. K. Chang, R. N. Chang, J. Fan, G. C. Fox, Z. Jin, G. Pravadelli, & H. Shahriar (Eds.), 2023 IEEE International Conference on Digital Health: IEEE ICDH 2023 : hybrid conference, Chicago, Illinois, 2-8 July 2023 : proceedings (pp. 325-327). IEEE Computer Society. https://doi.org/10.1109/ICDH60066.2023.00055 [details]
Wang, Y., Kanwal, N., Engan, K., Rong, C., & Zhao, Z. (2023). Towards a Privacy-Preserving Distributed Cloud Service for Preprocessing Very Large Medical Images. In C. K. Chang, R. N. Chang, J. Fan, G. C. Fox, Z. Jin, G. Pravadelli, & H. Shahriar (Eds.), 2023 IEEE International Conference on Digital Health: IEEE ICDH 2023 : hybrid conference, Chicago, Illinois, 2-8 July 2023 : proceedings (pp. 325-327). IEEE Computer Society. https://doi.org/10.1109/ICDH60066.2023.00055 [details] Xin, R., Chen, P., & Zhao, Z. (2023). CausalRCA: Causal inference based precise fine-grained root cause localization for microservice applications. Journal of Systems and Software, 203, Article 111724. https://doi.org/10.1016/j.jss.2023.111724 [details]
Xin, R., Chen, P., & Zhao, Z. (2023). CausalRCA: Causal inference based precise fine-grained root cause localization for microservice applications. Journal of Systems and Software, 203, Article 111724. https://doi.org/10.1016/j.jss.2023.111724 [details] Xin, R., Liu, H., Chen, P., & Zhao, Z. (2023). Robust and accurate performance anomaly detection and prediction for cloud applications: a novel ensemble learning-based framework. Journal of Cloud Computing, 12, Article 7. https://doi.org/10.1186/s13677-022-00383-6 [details]
Xin, R., Liu, H., Chen, P., & Zhao, Z. (2023). Robust and accurate performance anomaly detection and prediction for cloud applications: a novel ensemble learning-based framework. Journal of Cloud Computing, 12, Article 7. https://doi.org/10.1186/s13677-022-00383-6 [details] Zhu, Z., Ai, C., Chen, H., Chen, B., Duan, W., Qiu, X., Lu, X., He, M., Zhao, Z., & Liu, Z. (2023). Understanding the Necessity and Economic Benefits of Lockdown Measures to Contain COVID-19. IEEE Transactions on Computational Social Systems, 10(4), 1888-1900. https://doi.org/10.1109/TCSS.2022.3194639 [details]
Zhu, Z., Ai, C., Chen, H., Chen, B., Duan, W., Qiu, X., Lu, X., He, M., Zhao, Z., & Liu, Z. (2023). Understanding the Necessity and Economic Benefits of Lockdown Measures to Contain COVID-19. IEEE Transactions on Computational Social Systems, 10(4), 1888-1900. https://doi.org/10.1109/TCSS.2022.3194639 [details] Boyko, A., Farshidi, S., & Zhao, Z. (2022). An Adaptable Framework for Entity Matching Model Selection in Business Enterprises. In 2022 IEEE 24th Conference on Business Informatics: CBI 2022 : proceedings : Amsterdam, The Netherlands, 15-17 June 2022 (Vol. 1, pp. 90-99). IEEE Computer Society. https://doi.org/10.1109/CBI54897.2022.00017 [details]
Boyko, A., Farshidi, S., & Zhao, Z. (2022). An Adaptable Framework for Entity Matching Model Selection in Business Enterprises. In 2022 IEEE 24th Conference on Business Informatics: CBI 2022 : proceedings : Amsterdam, The Netherlands, 15-17 June 2022 (Vol. 1, pp. 90-99). IEEE Computer Society. https://doi.org/10.1109/CBI54897.2022.00017 [details] Farshidi, S., & Zhao, Z. (2022). An Adaptable Indexing Pipeline for Enriching Meta Information of Datasets from Heterogeneous Repositories. In J. Gama, T. Li, Y. Yu, E. Chen, Y. Zheng, & F. Teng (Eds.), Advances in Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16–19, 2022 : proceedings (Vol. II, pp. 472-484). (Lecture Notes in Computer Science; Vol. 13281), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-031-05936-0_37 [details]
Farshidi, S., & Zhao, Z. (2022). An Adaptable Indexing Pipeline for Enriching Meta Information of Datasets from Heterogeneous Repositories. In J. Gama, T. Li, Y. Yu, E. Chen, Y. Zheng, & F. Teng (Eds.), Advances in Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16–19, 2022 : proceedings (Vol. II, pp. 472-484). (Lecture Notes in Computer Science; Vol. 13281), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-031-05936-0_37 [details] Hoogenkamp, B., Farshidi, S., Xin, R., Shi, Z., Chen, P., & Zhao, Z. (2022). A Decentralized Service Control Framework for Decentralized Applications in Cloud Environments. In F. Montesi, G. A. Papadopoulos, & W. Zimmermann (Eds.), Service-Oriented and Cloud Computing: 9th IFIP WG 6.12 European Conference, ESOCC 2022, Wittenberg, Germany, March 22–24, 2022 : proceedings (pp. 65-73). (Lecture Notes in Computer Science; Vol. 13226). Springer. https://doi.org/10.1007/978-3-031-04718-3_4 [details]
Hoogenkamp, B., Farshidi, S., Xin, R., Shi, Z., Chen, P., & Zhao, Z. (2022). A Decentralized Service Control Framework for Decentralized Applications in Cloud Environments. In F. Montesi, G. A. Papadopoulos, & W. Zimmermann (Eds.), Service-Oriented and Cloud Computing: 9th IFIP WG 6.12 European Conference, ESOCC 2022, Wittenberg, Germany, March 22–24, 2022 : proceedings (pp. 65-73). (Lecture Notes in Computer Science; Vol. 13226). Springer. https://doi.org/10.1007/978-3-031-04718-3_4 [details] Koulouzis, S., Bianchi, R., van der Linde, R., Wang, Y., & Zhao, Z. (2022). SPIRIT: A Microservice-Based Framework for Interactive Cloud Infrastructure Planning. In R. Chaves, D. B. Heras, A. Ilic, & D. Unat (Eds.), Euro-Par 2021: Parallel Processing Workshops: Euro-Par 2021 International Workshops, Lisbon, Portugal, August 30-31, 2021 : revised selected papers (pp. 405-416). (Lecture Notes in Computer Science; Vol. 13098). Springer. https://doi.org/10.1007/978-3-031-06156-1_32 [details]
Koulouzis, S., Bianchi, R., van der Linde, R., Wang, Y., & Zhao, Z. (2022). SPIRIT: A Microservice-Based Framework for Interactive Cloud Infrastructure Planning. In R. Chaves, D. B. Heras, A. Ilic, & D. Unat (Eds.), Euro-Par 2021: Parallel Processing Workshops: Euro-Par 2021 International Workshops, Lisbon, Portugal, August 30-31, 2021 : revised selected papers (pp. 405-416). (Lecture Notes in Computer Science; Vol. 13098). Springer. https://doi.org/10.1007/978-3-031-06156-1_32 [details] Li, N., Farshidi, S., Bianchi, R., Koulouzis, S., & Zhao, Z. (2022). Context-Aware Notebook Search in a Jupyter-Based Virtual Research Environment. In eScience '22 : Democratizing science : 2022 IEEE 18th International Conference on e-Science: proceedings : eScience 2022 : Salt Lake City, Utah, USA, 10-14 October 202  (pp. 393-394). Conference Publishing Services, IEEE Computer Society. https://doi.org/10.1109/eScience55777.2022.00054 [details]
Li, N., Farshidi, S., Bianchi, R., Koulouzis, S., & Zhao, Z. (2022). Context-Aware Notebook Search in a Jupyter-Based Virtual Research Environment. In eScience '22 : Democratizing science : 2022 IEEE 18th International Conference on e-Science: proceedings : eScience 2022 : Salt Lake City, Utah, USA, 10-14 October 202  (pp. 393-394). Conference Publishing Services, IEEE Computer Society. https://doi.org/10.1109/eScience55777.2022.00054 [details] Liu, H., Xin, R., Chen, P., & Zhao, Z. (2022). Multi-Objective Robust Workflow Offloading in Edge-to-Cloud Continuum. In C. A. Ardagna, N. Atukorala, R. Buyya, C. K. Chang, R. N. Chang, E. Damiani, G. B. Dasgupta, F. Gagliardi, C. Hagleitner, D. Milojicic, T. M. H. Trong, R. Ward, F. Xhafa, & J. Zhang (Eds.), 2022 IEEE 15th International Conference on Cloud Computing (IEEE CLOUD 2022): proceedings : hybrid conference, Barcelona, Spain, 11-15 July 2022 (pp. 469-478). IEEE Computer Society. https://doi.org/10.1109/CLOUD55607.2022.00070 [details]
Liu, H., Xin, R., Chen, P., & Zhao, Z. (2022). Multi-Objective Robust Workflow Offloading in Edge-to-Cloud Continuum. In C. A. Ardagna, N. Atukorala, R. Buyya, C. K. Chang, R. N. Chang, E. Damiani, G. B. Dasgupta, F. Gagliardi, C. Hagleitner, D. Milojicic, T. M. H. Trong, R. Ward, F. Xhafa, & J. Zhang (Eds.), 2022 IEEE 15th International Conference on Cloud Computing (IEEE CLOUD 2022): proceedings : hybrid conference, Barcelona, Spain, 11-15 July 2022 (pp. 469-478). IEEE Computer Society. https://doi.org/10.1109/CLOUD55607.2022.00070 [details] Shi, Z., Ivankovic, V., Farshidi, S., Surbiryala, J., Zhou, H., & Zhao, Z. (2022). AWESOME: an auction and witness enhanced SLA model for decentralized cloud marketplaces. Journal of Cloud Computing, 11, Article 27. https://doi.org/10.1186/s13677-022-00292-8 [details]
Shi, Z., Ivankovic, V., Farshidi, S., Surbiryala, J., Zhou, H., & Zhao, Z. (2022). AWESOME: an auction and witness enhanced SLA model for decentralized cloud marketplaces. Journal of Cloud Computing, 11, Article 27. https://doi.org/10.1186/s13677-022-00292-8 [details] Shi, Z., Zhou, H., de Laat, C., & Zhao, Z. (2022). A Bayesian game-enhanced auction model for federated cloud services using blockchain. Future Generation Computer Systems, 136, 49-66. https://doi.org/10.1016/j.future.2022.05.017 [details]
Shi, Z., Zhou, H., de Laat, C., & Zhao, Z. (2022). A Bayesian game-enhanced auction model for federated cloud services using blockchain. Future Generation Computer Systems, 136, 49-66. https://doi.org/10.1016/j.future.2022.05.017 [details] Wang, Y., Koulouzis, S., Bianchi, R., Li, N., Shi, Y., Timmermans, J., Kissling, W. D., & Zhao, Z. (2022). Scaling Notebooks as Re-configurable Cloud Workflows. Data Intelligence, 4(2), 409-425. https://doi.org/10.1162/dint_a_00140 [details]
Wang, Y., Koulouzis, S., Bianchi, R., Li, N., Shi, Y., Timmermans, J., Kissling, W. D., & Zhao, Z. (2022). Scaling Notebooks as Re-configurable Cloud Workflows. Data Intelligence, 4(2), 409-425. https://doi.org/10.1162/dint_a_00140 [details] Wittenburg, P., Hardisty, A., Franc, Y. L., Mozaffari, A., Peer, L., Skvortsov, N. A., Zhao, Z., & Spinuso, A. (2022). Canonical Workflows to Make Data FAIR. Data Intelligence, 4(2), 286-305. https://doi.org/10.1162/dint_a_00132 [details]
Wittenburg, P., Hardisty, A., Franc, Y. L., Mozaffari, A., Peer, L., Skvortsov, N. A., Zhao, Z., & Spinuso, A. (2022). Canonical Workflows to Make Data FAIR. Data Intelligence, 4(2), 286-305. https://doi.org/10.1162/dint_a_00132 [details] Wittenburg, P., Hardisty, A., Mozzafari, A., Peer, L., Skvortsov, N., Spinuso, A., & Zhao, Z. (2022). Editors’ Note: Special Issue on Canonical Workflow Frameworks for Research. Data Intelligence, 4(2), 149-154. https://doi.org/10.1162/dint_e_00122 [details]
Wittenburg, P., Hardisty, A., Mozzafari, A., Peer, L., Skvortsov, N., Spinuso, A., & Zhao, Z. (2022). Editors’ Note: Special Issue on Canonical Workflow Frameworks for Research. Data Intelligence, 4(2), 149-154. https://doi.org/10.1162/dint_e_00122 [details] Xin, R., Mohazzab, J., Shi, Z., & Zhao, Z. (2022). CBProf: Customisable Blockchain-as-a-Service Performance Profiler in Cloud Environments. In K. Lee, & L.-J. Zhang (Eds.), Blockchain – ICBC 2021: 4th International Conference, held as part of the Services Conference Federation, SCF 2021, virtual event, December 10–14, 2021 : proceedings (pp. 131-139). (Lecture Notes in Computer Science; Vol. 12991). Springer. https://doi.org/10.1007/978-3-030-96527-3_9 [details]
Xin, R., Mohazzab, J., Shi, Z., & Zhao, Z. (2022). CBProf: Customisable Blockchain-as-a-Service Performance Profiler in Cloud Environments. In K. Lee, & L.-J. Zhang (Eds.), Blockchain – ICBC 2021: 4th International Conference, held as part of the Services Conference Federation, SCF 2021, virtual event, December 10–14, 2021 : proceedings (pp. 131-139). (Lecture Notes in Computer Science; Vol. 12991). Springer. https://doi.org/10.1007/978-3-030-96527-3_9 [details] Xin, R., Stallinga, S., Liu, H., Chen, P., & Zhao, Z. (2022). Provenance-enhanced Root Cause Analysis for Jupyter Notebooks. In 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing: UCC 2022 : Vancouver, Washington, USA, 6-9 December 2022 : proceedings (pp. 327-333). IEEE. https://doi.org/10.1109/UCC56403.2022.00058, https://doi.org/10.1109/UCC56403.2022.00058 [details]
Xin, R., Stallinga, S., Liu, H., Chen, P., & Zhao, Z. (2022). Provenance-enhanced Root Cause Analysis for Jupyter Notebooks. In 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing: UCC 2022 : Vancouver, Washington, USA, 6-9 December 2022 : proceedings (pp. 327-333). IEEE. https://doi.org/10.1109/UCC56403.2022.00058, https://doi.org/10.1109/UCC56403.2022.00058 [details] Zhao, Z., Koulouzis, S., Bianchi, R., Farshidi, S., Shi, Z., Xin, R., Wang, Y., Li, N., Shi, Y., Timmermans, J., & Kissling, W. D. (2022). Notebook-as-a-VRE (NaaVRE): From private notebooks to a collaborative cloud virtual research environment. Software - Practice and Experience, 52(9), 1947-1966. https://doi.org/10.1002/spe.3098 [details]
Zhao, Z., Koulouzis, S., Bianchi, R., Farshidi, S., Shi, Z., Xin, R., Wang, Y., Li, N., Shi, Y., Timmermans, J., & Kissling, W. D. (2022). Notebook-as-a-VRE (NaaVRE): From private notebooks to a collaborative cloud virtual research environment. Software - Practice and Experience, 52(9), 1947-1966. https://doi.org/10.1002/spe.3098 [details] Zhu, Z., Chen, B., Chen, H., Qiu, S., Fan, C., Zhao, Y., Guo, R., Ai, C., Liu, Z., Zhao, Z., Fang, L., & Lu, X. (2022). Strategy evaluation and optimization with an artificial society toward a Pareto optimum. The Innovation, 3(5), Article 100274. https://doi.org/10.1016/j.xinn.2022.100274 [details]
Zhu, Z., Chen, B., Chen, H., Qiu, S., Fan, C., Zhao, Y., Guo, R., Ai, C., Liu, Z., Zhao, Z., Fang, L., & Lu, X. (2022). Strategy evaluation and optimization with an artificial society toward a Pareto optimum. The Innovation, 3(5), Article 100274. https://doi.org/10.1016/j.xinn.2022.100274 [details] Bergers, J., Shi, Z., Korsmit, K., & Zhao, Z. (2021). DWH-DIM: A Blockchain Based Decentralized Integrity Verification Model for Data Warehouses. In Y. Xiang, Z. Wang, H. Wang, & V. Niemi (Eds.), 2021 IEEE International Conference on Blockchain : Blockchain 2021: proceedings : 6-8 December 2021, Melbourne, Australia (pp. 221-228). IEEE Computer Society. https://doi.org/10.1109/Blockchain53845.2021.00037 [details]
Bergers, J., Shi, Z., Korsmit, K., & Zhao, Z. (2021). DWH-DIM: A Blockchain Based Decentralized Integrity Verification Model for Data Warehouses. In Y. Xiang, Z. Wang, H. Wang, & V. Niemi (Eds.), 2021 IEEE International Conference on Blockchain : Blockchain 2021: proceedings : 6-8 December 2021, Melbourne, Australia (pp. 221-228). IEEE Computer Society. https://doi.org/10.1109/Blockchain53845.2021.00037 [details] Calyam, P., Wilkins‐Diehr, N., Miller, M., Brookes, E. H., Arora, R., Chourasia, A., Jennewein, D. M., Nandigam, V., LaMar, M. D., Cleveland, S. B., Newman, G., Wang, S., Zaslavsky, I., Cianfrocco, M. A., Ellett, K., Tarboton, D., Jeffery, K. G., Zhao, Z., González‐Aranda, J., ... Gesing, S. (2021). Measuring success for a future vision: Defining impact in science gateways/virtual research environments. Concurrency and Computation: Practice and Experience, 33(19), Article e6099. https://doi.org/10.1002/cpe.6099 [details]
Calyam, P., Wilkins‐Diehr, N., Miller, M., Brookes, E. H., Arora, R., Chourasia, A., Jennewein, D. M., Nandigam, V., LaMar, M. D., Cleveland, S. B., Newman, G., Wang, S., Zaslavsky, I., Cianfrocco, M. A., Ellett, K., Tarboton, D., Jeffery, K. G., Zhao, Z., González‐Aranda, J., ... Gesing, S. (2021). Measuring success for a future vision: Defining impact in science gateways/virtual research environments. Concurrency and Computation: Practice and Experience, 33(19), Article e6099. https://doi.org/10.1002/cpe.6099 [details] Karandikar, N., Abhishek, R., Saurabh, N., Zhao, Z., Lercher, A., Marina, N., Prodan, R., Rong, C., & Chakravorty, A. (2021). Blockchain-based prosumer incentivization for peak mitigation through temporal aggregation and contextual clustering. Blockchain: Research and Applications, 2(2), Article 100016. https://doi.org/10.1016/j.bcra.2021.100016 [details]
Karandikar, N., Abhishek, R., Saurabh, N., Zhao, Z., Lercher, A., Marina, N., Prodan, R., Rong, C., & Chakravorty, A. (2021). Blockchain-based prosumer incentivization for peak mitigation through temporal aggregation and contextual clustering. Blockchain: Research and Applications, 2(2), Article 100016. https://doi.org/10.1016/j.bcra.2021.100016 [details] Liu, H., Chen, P., & Zhao, Z. (2021). Towards A Robust Meta-Reinforcement Learning-Based Scheduling Framework for Time Critical Tasks in Cloud Environments. In C. A. Ardagna, C. Chang, E. Daminai, R. Ranjan, Z. Wang, R. Ward, J. Zhang, & W. Zhang (Eds.), 2021 IEEE 14th International Conference on Cloud Computing: CLOUD 2021 : proceedings : virtual conference, 5-11 September 2021 (pp. 637-647). IEEE Computer Society. https://doi.org/10.1109/CLOUD53861.2021.00082 [details]
Liu, H., Chen, P., & Zhao, Z. (2021). Towards A Robust Meta-Reinforcement Learning-Based Scheduling Framework for Time Critical Tasks in Cloud Environments. In C. A. Ardagna, C. Chang, E. Daminai, R. Ranjan, Z. Wang, R. Ward, J. Zhang, & W. Zhang (Eds.), 2021 IEEE 14th International Conference on Cloud Computing: CLOUD 2021 : proceedings : virtual conference, 5-11 September 2021 (pp. 637-647). IEEE Computer Society. https://doi.org/10.1109/CLOUD53861.2021.00082 [details] Poon, L., Farshidi, S., Li, N., & Zhao, Z. (2021). Unsupervised Anomaly Detection in Data Quality Control. In Y. Chen, H. Ludwig, Y. Tu, U. Fayyad, X. Zhu, X. Hu, S. Byna, X. Liu, J. Zhang, S. Pan, V. Papalexakis, J. Wang, A. Cuzzocrea, & C. Ordonez (Eds.), 2021 IEEE International Conference on Big Data: proceedings : Dec 15-Dec 18, 2021 : virtual event (pp. 2327-2336). IEEE. https://doi.org/10.1109/BigData52589.2021.9671672 [details]
Poon, L., Farshidi, S., Li, N., & Zhao, Z. (2021). Unsupervised Anomaly Detection in Data Quality Control. In Y. Chen, H. Ludwig, Y. Tu, U. Fayyad, X. Zhu, X. Hu, S. Byna, X. Liu, J. Zhang, S. Pan, V. Papalexakis, J. Wang, A. Cuzzocrea, & C. Ordonez (Eds.), 2021 IEEE International Conference on Big Data: proceedings : Dec 15-Dec 18, 2021 : virtual event (pp. 2327-2336). IEEE. https://doi.org/10.1109/BigData52589.2021.9671672 [details] Saurabh, N., Rubia, C., Palanisamy, A., Koulouzis, S., Sefidanoski, M., Chakravorty, A., Zhao, Z., Karadimce, A., & Prodan, R. (2021). The ARTICONF approach to decentralized car-sharing. Blockchain: Research and Applications, 2(3), Article 100013. https://doi.org/10.1016/j.bcra.2021.100013 [details]
Saurabh, N., Rubia, C., Palanisamy, A., Koulouzis, S., Sefidanoski, M., Chakravorty, A., Zhao, Z., Karadimce, A., & Prodan, R. (2021). The ARTICONF approach to decentralized car-sharing. Blockchain: Research and Applications, 2(3), Article 100013. https://doi.org/10.1016/j.bcra.2021.100013 [details] Shi, Z., Farshidi, S., Zhou, H., & Zhao, Z. (2021). An auction and witness enhanced trustworthy SLA model for decentralized cloud marketplaces. In GoodIT '21: proceedings of the Conference on Information Technology for Social Good : September 9-11, 2021, Roma, Italy (pp. 109-114). The Association for Computing Machinery. https://doi.org/10.1145/3462203.3475876, https://doi.org/10.1145/3462203.3475876 [details]
Shi, Z., Farshidi, S., Zhou, H., & Zhao, Z. (2021). An auction and witness enhanced trustworthy SLA model for decentralized cloud marketplaces. In GoodIT '21: proceedings of the Conference on Information Technology for Social Good : September 9-11, 2021, Roma, Italy (pp. 109-114). The Association for Computing Machinery. https://doi.org/10.1145/3462203.3475876, https://doi.org/10.1145/3462203.3475876 [details] Uriarte, R. B., Zhou, H., Kritikos, K., Shi, Z., Zhao, Z., & De Nicola, R. (2021). Distributed service‐level agreement management with smart contracts and blockchain. Concurrency and Computation: Practice and Experience, 33(14), Article e5800. https://doi.org/10.1002/cpe.5800 [details]
Uriarte, R. B., Zhou, H., Kritikos, K., Shi, Z., Zhao, Z., & De Nicola, R. (2021). Distributed service‐level agreement management with smart contracts and blockchain. Concurrency and Computation: Practice and Experience, 33(14), Article e5800. https://doi.org/10.1002/cpe.5800 [details] Zhou, H., Ouyang, X., Su, J., de Laat, C., & Zhao, Z. (2021). Enforcing trustworthy cloud SLA with witnesses: A game theory–based model using smart contracts. Concurrency and Computation: Practice and Experience, 33(14), Article e5511. https://doi.org/10.1002/cpe.5511 [details]
Zhou, H., Ouyang, X., Su, J., de Laat, C., & Zhao, Z. (2021). Enforcing trustworthy cloud SLA with witnesses: A game theory–based model using smart contracts. Concurrency and Computation: Practice and Experience, 33(14), Article e5511. https://doi.org/10.1002/cpe.5511 [details] Zhu, Z., Chen, B., Liu, W., Zhao, Y., Liu, Z., & Zhao, Z. (2021). A Cost-Quality Beneficial Cell Selection Approach for Sparse Mobile Crowdsensing with Diverse Sensing Costs. IEEE Internet of Things Journal, 8(5), 3831-3850. https://doi.org/10.1109/JIOT.2020.3024833 [details]
Zhu, Z., Chen, B., Liu, W., Zhao, Y., Liu, Z., & Zhao, Z. (2021). A Cost-Quality Beneficial Cell Selection Approach for Sparse Mobile Crowdsensing with Diverse Sensing Costs. IEEE Internet of Things Journal, 8(5), 3831-3850. https://doi.org/10.1109/JIOT.2020.3024833 [details] Hu, Y., Zhou, H., de Laat, C., & Zhao, Z. (2020). Concurrent container scheduling on heterogeneous clusters with multi-resource constraints. Future Generation Computer Systems, 102, 562-573. https://doi.org/10.1016/j.future.2019.08.025 [details]
Hu, Y., Zhou, H., de Laat, C., & Zhao, Z. (2020). Concurrent container scheduling on heterogeneous clusters with multi-resource constraints. Future Generation Computer Systems, 102, 562-573. https://doi.org/10.1016/j.future.2019.08.025 [details] Jeffery, K., Pursula, A., & Zhao, Z. (2020). ICT Infrastructures for Environmental and Earth Sciences. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 17-29). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_2 [details]
Jeffery, K., Pursula, A., & Zhao, Z. (2020). ICT Infrastructures for Environmental and Earth Sciences. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 17-29). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_2 [details] Koulouzis, S., Carval, T., Heikkinen, J., Pursula, A., & Zhao, Z. (2020). Case Study: Data Subscriptions Using Elastic Cloud Services. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 293-306). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_16 [details]
Koulouzis, S., Carval, T., Heikkinen, J., Pursula, A., & Zhao, Z. (2020). Case Study: Data Subscriptions Using Elastic Cloud Services. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 293-306). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_16 [details] Koulouzis, S., Martin, P., & Zhao, Z. (2020). Virtual Infrastructure Optimisation. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 192-207). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_11 [details]
Koulouzis, S., Martin, P., & Zhao, Z. (2020). Virtual Infrastructure Optimisation. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 192-207). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_11 [details] Koulouzis, S., Martin, P., Zhou, H., Hu, Y., Wang, J., Carval, T., Grenier, B., Heikkinen, J., de Laat, C., & Zhao, Z. (2020). Time-critical data management in clouds: challenges and a Dynamic Real-time Infrastructure Planner (DRIP) solution. Concurrency and Computation: Practice and Experience, 32(16), Article e5269. https://doi.org/10.1002/cpe.5269 [details]
Koulouzis, S., Martin, P., Zhou, H., Hu, Y., Wang, J., Carval, T., Grenier, B., Heikkinen, J., de Laat, C., & Zhao, Z. (2020). Time-critical data management in clouds: challenges and a Dynamic Real-time Infrastructure Planner (DRIP) solution. Concurrency and Computation: Practice and Experience, 32(16), Article e5269. https://doi.org/10.1002/cpe.5269 [details] Magagna, B., Goldfarb, D., Martin, P., Atkinson, M., Koulouzis, S., & Zhao, Z. (2020). Data Provenance. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 208-225). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_12 [details]
Magagna, B., Goldfarb, D., Martin, P., Atkinson, M., Koulouzis, S., & Zhao, Z. (2020). Data Provenance. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 208-225). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_12 [details] Magagna, B., Martin, P., Nieva de la Hidalga, A., Atkinson, M., & Zhao, Z. (2020). Common Challenges and Requirements. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 30-57). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_3 [details]
Magagna, B., Martin, P., Nieva de la Hidalga, A., Atkinson, M., & Zhao, Z. (2020). Common Challenges and Requirements. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 30-57). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_3 [details] Martin, P., Liao, X., Magagna, B., Stocker, M., & Zhao, Z. (2020). Semantic and Knowledge Engineering Using ENVRI RM. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 100-119). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_6 [details]
Martin, P., Liao, X., Magagna, B., Stocker, M., & Zhao, Z. (2020). Semantic and Knowledge Engineering Using ENVRI RM. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 100-119). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_6 [details] Martin, P., Magagna, B., Liao, X., & Zhao, Z. (2020). Semantic Linking of Research Infrastructure Metadata. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 226-246). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_13 [details]
Martin, P., Magagna, B., Liao, X., & Zhao, Z. (2020). Semantic Linking of Research Infrastructure Metadata. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 226-246). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_13 [details] Nieva de la Hidalga, A., Hardisty, A., Martin, P., Magagna, B., & Zhao, Z. (2020). The ENVRI Reference Model. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 61-81). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_4 [details]
Nieva de la Hidalga, A., Hardisty, A., Martin, P., Magagna, B., & Zhao, Z. (2020). The ENVRI Reference Model. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 61-81). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_4 [details] Prodan, R., Saurabh, N., Zhao, Z., Orton-Johnson, K., Chakravorty, A., Karadimce, A., & Ulisses, A. (2020). ARTICONF: Towards a Smart Social Media Ecosystem in a Blockchain Federated Environment. In U. Schwardmann, C. Boehme, & D. B. Heras (Eds.), Euro-Par 2019: Parallel Processing Workshops: Euro-Par 2019 International Workshops, Göttingen, Germany, August 26–30, 2019 : revised selected papers (pp. 417-428). (Lecture Notes in Computer Science; Vol. 11997). Springer. https://doi.org/10.5281/zenodo.3580716, https://doi.org/10.1007/978-3-030-48340-1_32 [details]
Prodan, R., Saurabh, N., Zhao, Z., Orton-Johnson, K., Chakravorty, A., Karadimce, A., & Ulisses, A. (2020). ARTICONF: Towards a Smart Social Media Ecosystem in a Blockchain Federated Environment. In U. Schwardmann, C. Boehme, & D. B. Heras (Eds.), Euro-Par 2019: Parallel Processing Workshops: Euro-Par 2019 International Workshops, Göttingen, Germany, August 26–30, 2019 : revised selected papers (pp. 417-428). (Lecture Notes in Computer Science; Vol. 11997). Springer. https://doi.org/10.5281/zenodo.3580716, https://doi.org/10.1007/978-3-030-48340-1_32 [details] Quimbert, E., Jeffery, K., Martens, C., Martin, P., & Zhao, Z. (2020). Data Cataloguing. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 140-161). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_8 [details]
Quimbert, E., Jeffery, K., Martens, C., Martin, P., & Zhao, Z. (2020). Data Cataloguing. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 140-161). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_8 [details] Wang, Y., & Zhao, Z. (2020). Decentralized workflow management on software defined infrastructures. In 2020 IEEE World Congress on Services: proceedings : 18-24 October 2020 : virtual event (pp. 265-268). (SERVICES). IEEE Computer Society. https://doi.org/10.1109/SERVICES48979.2020.00059 [details]
Wang, Y., & Zhao, Z. (2020). Decentralized workflow management on software defined infrastructures. In 2020 IEEE World Congress on Services: proceedings : 18-24 October 2020 : virtual event (pp. 265-268). (SERVICES). IEEE Computer Society. https://doi.org/10.1109/SERVICES48979.2020.00059 [details] Zhao, Z., & Hellström, M. (Eds.) (2020). Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges. (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4 [details]
Zhao, Z., & Hellström, M. (Eds.) (2020). Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges. (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4 [details] Zhao, Z., & Jeffery, K. (2020). Reference Model Guided Engineering. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 82-99). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_5 [details]
Zhao, Z., & Jeffery, K. (2020). Reference Model Guided Engineering. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 82-99). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_5 [details] Zhao, Z., Jeffery, K., Stocker, M., Atkinson, M., & Petzold, A. (2020). Towards Operational Research Infrastructures with FAIR Data and Services. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 360-372). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_20 [details]
Zhao, Z., Jeffery, K., Stocker, M., Atkinson, M., & Petzold, A. (2020). Towards Operational Research Infrastructures with FAIR Data and Services. In Z. Zhao, & M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 360-372). (Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-030-52829-4_20 [details] Zhao, Z., Taylor, I., & Prodan, R. (2020). Editorial for FGCS Special issue on “Time-critical Applications on Software-defined Infrastructures”. Future Generation Computer Systems, 112, 1170-1171. https://doi.org/10.1016/j.future.2020.07.056 [details]
Zhao, Z., Taylor, I., & Prodan, R. (2020). Editorial for FGCS Special issue on “Time-critical Applications on Software-defined Infrastructures”. Future Generation Computer Systems, 112, 1170-1171. https://doi.org/10.1016/j.future.2020.07.056 [details] Zhou, H., Ouyang, X., & Zhao, Z. (2020). ALLSTAR: A Blockchain Based Decentralized Ecosystem for Cloud and Edge Computing. In 2020 IEEE International Conference on JointCloud Computing: proceedings : 3-6 August 2020, Oxford, United Kingdom (pp. 55-62). IEEE Computer Society. https://doi.org/10.1109/JCC49151.2020.00018 [details]
Zhou, H., Ouyang, X., & Zhao, Z. (2020). ALLSTAR: A Blockchain Based Decentralized Ecosystem for Cloud and Edge Computing. In 2020 IEEE International Conference on JointCloud Computing: proceedings : 3-6 August 2020, Oxford, United Kingdom (pp. 55-62). IEEE Computer Society. https://doi.org/10.1109/JCC49151.2020.00018 [details] de Jong, K., Fahrenfort, C., Younis, A., & Zhao, Z. (2020). Sharing digital object across data infrastructures using Named Data Networking (NDN). In L. Levevre, C. A. Varela, G. Pallis, A. N. Toosi, O. Rana, & R. Buyya (Eds.), 20th IEEE/ACM International Symposium on Cluster, Cloud  and Internet Computing: proceedings : 11-14 May 2020, Melbourne, Australia (pp. 873-880). IEEE Computer Society. https://doi.org/10.1109/CCGrid49817.2020.00013 [details]
de Jong, K., Fahrenfort, C., Younis, A., & Zhao, Z. (2020). Sharing digital object across data infrastructures using Named Data Networking (NDN). In L. Levevre, C. A. Varela, G. Pallis, A. N. Toosi, O. Rana, & R. Buyya (Eds.), 20th IEEE/ACM International Symposium on Cluster, Cloud  and Internet Computing: proceedings : 11-14 May 2020, Melbourne, Australia (pp. 873-880). IEEE Computer Society. https://doi.org/10.1109/CCGrid49817.2020.00013 [details] El Khaldi Ahanach, E., Koulouzis, S., & Zhao, Z. (2019). Contextual linking between workflow provenance and system performance logs. In IEEE 15th International Conference on eScience: proceedings : 24-27 September 2019, San Diego, California (pp. 634-635). IEEE Computer Society. https://doi.org/10.1109/eScience.2019.00093 [details]
El Khaldi Ahanach, E., Koulouzis, S., & Zhao, Z. (2019). Contextual linking between workflow provenance and system performance logs. In IEEE 15th International Conference on eScience: proceedings : 24-27 September 2019, San Diego, California (pp. 634-635). IEEE Computer Society. https://doi.org/10.1109/eScience.2019.00093 [details] Fahrenfort, C., & Zhao, Z. (2019). Effective digital object access and sharing over a networked environment using DOIP and NDN. In IEEE 15th International Conference on eScience: proceedings : 24-27 September 2019, San Diego, California (pp. 632-633). IEEE Computer Society. https://doi.org/10.1109/eScience.2019.00092 [details]
Fahrenfort, C., & Zhao, Z. (2019). Effective digital object access and sharing over a networked environment using DOIP and NDN. In IEEE 15th International Conference on eScience: proceedings : 24-27 September 2019, San Diego, California (pp. 632-633). IEEE Computer Society. https://doi.org/10.1109/eScience.2019.00092 [details] Hu, Y., de Laat, C., & Zhao, Z. (2019). Learning Workflow Scheduling on Multi-Resource Clusters. In 2019 IEEE International Conference on Networking, Architecture and Storage (NAS): proceedings : Enshi, China, 15-17 August 2019 (pp. 17-24). IEEE. https://doi.org/10.1109/NAS.2019.8834720 [details]
Hu, Y., de Laat, C., & Zhao, Z. (2019). Learning Workflow Scheduling on Multi-Resource Clusters. In 2019 IEEE International Conference on Networking, Architecture and Storage (NAS): proceedings : Enshi, China, 15-17 August 2019 (pp. 17-24). IEEE. https://doi.org/10.1109/NAS.2019.8834720 [details] Hu, Y., de Laat, C., & Zhao, Z. (2019). Optimizing Service Placement for Microservice Architecture in Clouds. Applied Sciences, 9(21), Article 4663. https://doi.org/10.3390/app9214663 [details]
Hu, Y., de Laat, C., & Zhao, Z. (2019). Optimizing Service Placement for Microservice Architecture in Clouds. Applied Sciences, 9(21), Article 4663. https://doi.org/10.3390/app9214663 [details] Liao, X., & Zhao, Z. (2019). Unsupervised Approaches for Textual Semantic Annotation, A Survey. ACM Computing Surveys, 52(4), Article 66. https://doi.org/10.1145/3324473 [details]
Liao, X., & Zhao, Z. (2019). Unsupervised Approaches for Textual Semantic Annotation, A Survey. ACM Computing Surveys, 52(4), Article 66. https://doi.org/10.1145/3324473 [details] Liao, X., Bottelier, J., & Zhao, Z. (2019). A Column Styled Composable Schema Matcher for Semantic Data-types. Data Science Journal, 18, Article 25. https://doi.org/10.5334/dsj-2019-025 [details]
Liao, X., Bottelier, J., & Zhao, Z. (2019). A Column Styled Composable Schema Matcher for Semantic Data-types. Data Science Journal, 18, Article 25. https://doi.org/10.5334/dsj-2019-025 [details] Martin, P., Remy, L., Theodoridou, M., Jeffery, K., & Zhao, Z. (2019). Mapping heterogeneous research infrastructure metadata into a unified catalogue for use in a generic virtual research environment. Future Generation Computer Systems, 101, 1-13. https://doi.org/10.1016/j.future.2019.05.076 [details]
Martin, P., Remy, L., Theodoridou, M., Jeffery, K., & Zhao, Z. (2019). Mapping heterogeneous research infrastructure metadata into a unified catalogue for use in a generic virtual research environment. Future Generation Computer Systems, 101, 1-13. https://doi.org/10.1016/j.future.2019.05.076 [details] Petzold, A., Asmi, A., Vermeulen, A., Pappalardo, G., Bailo, D., Schaap, D., Glaves, H. M., Bundke, U., & Zhao, Z. (2019). ENVRI-FAIR - Interoperable environmental FAIR data and services for society, innovation and research. In IEEE 15th International Conference on eScience: proceedings : 24-27 September 2019, San Diego, California (pp. 277-280). IEEE Computer Society. https://doi.org/10.1109/eScience.2019.00038 [details]
Petzold, A., Asmi, A., Vermeulen, A., Pappalardo, G., Bailo, D., Schaap, D., Glaves, H. M., Bundke, U., & Zhao, Z. (2019). ENVRI-FAIR - Interoperable environmental FAIR data and services for society, innovation and research. In IEEE 15th International Conference on eScience: proceedings : 24-27 September 2019, San Diego, California (pp. 277-280). IEEE Computer Society. https://doi.org/10.1109/eScience.2019.00038 [details] Remy, L., Ivanović, D., Theodoridou, M., Kritsotaki, A., Martin, P., Bailo, D., Sbarra, M., Zhao, Z., & Jeffery, K. (2019). Building an Integrated Enhanced Virtual Research Environment Metadata Catalogue. The electronic library, 37(6), 929-951. https://doi.org/10.5281/zenodo.3497055, https://doi.org/10.1108/EL-09-2018-0183 [details]
Remy, L., Ivanović, D., Theodoridou, M., Kritsotaki, A., Martin, P., Bailo, D., Sbarra, M., Zhao, Z., & Jeffery, K. (2019). Building an Integrated Enhanced Virtual Research Environment Metadata Catalogue. The electronic library, 37(6), 929-951. https://doi.org/10.5281/zenodo.3497055, https://doi.org/10.1108/EL-09-2018-0183 [details] Taal, A., Wang, J., de Laat, C., & Zhao, Z. (2019). Profiling the scheduling decisions for handling critical paths in deadline-constrained cloud workflows. Future Generation Computer Systems, 100, 237-249. https://doi.org/10.1016/j.future.2019.05.002 [details]
Taal, A., Wang, J., de Laat, C., & Zhao, Z. (2019). Profiling the scheduling decisions for handling critical paths in deadline-constrained cloud workflows. Future Generation Computer Systems, 100, 237-249. https://doi.org/10.1016/j.future.2019.05.002 [details] Tanhua, T., Pouliquen, S., Hausman, J., O’Brien, K., Bricher, P., de Bruin, T., Buck, J. J. H., Burger, E. F., Carval, T., Casey, K. S., Diggs, S., Giorgetti, A., Glaves, H., Harscoat, V., Kinkade, D., Muelbert, J. H., Novellino, A., Pfeil, B., Pulsifer, P. L., ... Zhao, Z. (2019). Ocean FAIR Data Services. Frontiers in Marine Science, 6, Article 440. https://doi.org/10.3389/fmars.2019.00440 [details]
Tanhua, T., Pouliquen, S., Hausman, J., O’Brien, K., Bricher, P., de Bruin, T., Buck, J. J. H., Burger, E. F., Carval, T., Casey, K. S., Diggs, S., Giorgetti, A., Glaves, H., Harscoat, V., Kinkade, D., Muelbert, J. H., Novellino, A., Pfeil, B., Pulsifer, P. L., ... Zhao, Z. (2019). Ocean FAIR Data Services. Frontiers in Marine Science, 6, Article 440. https://doi.org/10.3389/fmars.2019.00440 [details] Zhao, Z., Liao, X., Wang, X., Ruan, C., Zhu, Y., & Feng, D. (2019). 农业大数据基础设施开发的参考模型方法. 華東師範大學学报. 自然科学版 = Journal of East China Normal University. Natural science edition, 2019(2), 77-96. https://doi.org/10.3969/j.issn.1000-5641.2019.02.009 [details]
Zhao, Z., Liao, X., Wang, X., Ruan, C., Zhu, Y., & Feng, D. (2019). 农业大数据基础设施开发的参考模型方法. 華東師範大學学报. 自然科学版 = Journal of East China Normal University. Natural science edition, 2019(2), 77-96. https://doi.org/10.3969/j.issn.1000-5641.2019.02.009 [details] Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., & Zhao, Z. (2019). A Blockchain based Witness Model for Trustworthy Cloud Service Level Agreement Enforcement. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications (pp. 1567-1575). IEEE. https://doi.org/10.1109/INFOCOM.2019.8737580 [details]
Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., & Zhao, Z. (2019). A Blockchain based Witness Model for Trustworthy Cloud Service Level Agreement Enforcement. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications (pp. 1567-1575). IEEE. https://doi.org/10.1109/INFOCOM.2019.8737580 [details] Zhou, H., Shi, Z., Hu, Y., Donkers, P., Afanasyev, A., Koulouzis, S., Taal, A., Ulisses, A., & Zhao, Z. (2019). Large distributed virtual infrastructure partitioning and provisioning across providers. In 2019 IEEE International Conference on Smart Internet of Things: proceedings : 9-11 August 2019, Tianjin, China : IEEE SmartIoT 2019 (pp. 56-63). Conference Publishing Services, IEEE Computer Society. https://doi.org/10.1109/SmartIoT.2019.00018 [details]
Zhou, H., Shi, Z., Hu, Y., Donkers, P., Afanasyev, A., Koulouzis, S., Taal, A., Ulisses, A., & Zhao, Z. (2019). Large distributed virtual infrastructure partitioning and provisioning across providers. In 2019 IEEE International Conference on Smart Internet of Things: proceedings : 9-11 August 2019, Tianjin, China : IEEE SmartIoT 2019 (pp. 56-63). Conference Publishing Services, IEEE Computer Society. https://doi.org/10.1109/SmartIoT.2019.00018 [details] Jiang, W., Zhai, Y., Martin, P., & Zhao, Z. (2018). Structure Properties of Generalized Farey graphs based on Dynamical Systems for Networks. Scientific Reports, 8, Article 12194. https://doi.org/10.1038/s41598-018-30712-2 [details]
Jiang, W., Zhai, Y., Martin, P., & Zhao, Z. (2018). Structure Properties of Generalized Farey graphs based on Dynamical Systems for Networks. Scientific Reports, 8, Article 12194. https://doi.org/10.1038/s41598-018-30712-2 [details] Jiang, W., Zhai, Y., Zhuang, Z., Martin, P., Zhao, Z., & Liu, J.-B. (2018). Vertex Labeling and Routing for Farey-Type Symmetrically-Structured Graphs. Symmetry, 10(9), Article 407. https://doi.org/10.3390/sym10090407 [details]
Jiang, W., Zhai, Y., Zhuang, Z., Martin, P., Zhao, Z., & Liu, J.-B. (2018). Vertex Labeling and Routing for Farey-Type Symmetrically-Structured Graphs. Symmetry, 10(9), Article 407. https://doi.org/10.3390/sym10090407 [details] Taherizadeh, S., Jones, A. C., Taylor, I., Zhao, Z., & Stankovski, V. (2018). Monitoring self-adaptive applications within edge computing frameworks: A state-of-the-art review. Journal of Systems and Software, 136, 19-38. https://doi.org/10.1016/j.jss.2017.10.033 [details]
Taherizadeh, S., Jones, A. C., Taylor, I., Zhao, Z., & Stankovski, V. (2018). Monitoring self-adaptive applications within edge computing frameworks: A state-of-the-art review. Journal of Systems and Software, 136, 19-38. https://doi.org/10.1016/j.jss.2017.10.033 [details] Casale, G., Chesta, C., Deussen, P., Di Nitto, E., Gouvas, P., Koussouris, S., Stankovski, V., Symeonidis, A., Vlassiou, V., Zafeiropoulos, A., & Zhao, Z. (2016). Current and Future Challenges of Software Engineering for Services and Applications. Procedia Computer Science, 97, 34–42. https://doi.org/10.1016/j.procs.2016.08.278 [details]
Casale, G., Chesta, C., Deussen, P., Di Nitto, E., Gouvas, P., Koussouris, S., Stankovski, V., Symeonidis, A., Vlassiou, V., Zafeiropoulos, A., & Zhao, Z. (2016). Current and Future Challenges of Software Engineering for Services and Applications. Procedia Computer Science, 97, 34–42. https://doi.org/10.1016/j.procs.2016.08.278 [details] Petcu, D., Fazio, M., Prodan, R., Zhao, Z., & Rak, M. (2016). On the Next Generations of Infrastructure-as-a-Services. In J. Cardoso, D. Ferguson, V. Méndez Muñoz, & M. Helfert (Eds.), CLOSER 2016: proceedings of the 6th International Conference on Cloud Computing and Services Science: April 23-25, 2016, Rome, Italy  (Vol. 1, pp. 320-326). SciTePress Science and Technology Publications. https://doi.org/10.5220/0005912503200326 [details]
Petcu, D., Fazio, M., Prodan, R., Zhao, Z., & Rak, M. (2016). On the Next Generations of Infrastructure-as-a-Services. In J. Cardoso, D. Ferguson, V. Méndez Muñoz, & M. Helfert (Eds.), CLOSER 2016: proceedings of the 6th International Conference on Cloud Computing and Services Science: April 23-25, 2016, Rome, Italy  (Vol. 1, pp. 320-326). SciTePress Science and Technology Publications. https://doi.org/10.5220/0005912503200326 [details] Jeferry, K., Kousiouris, G., Kyriazis, D., Altmann, J., Ciuffoletti, A., Maglogiannis, I., Nesi, P., Suzic, B., & Zhao, Z. (2015). Challenges emerging from future cloud application scenarios. Procedia Computer Science, 68, 227-237. https://doi.org/10.1016/j.procs.2015.09.238 [details]
Jeferry, K., Kousiouris, G., Kyriazis, D., Altmann, J., Ciuffoletti, A., Maglogiannis, I., Nesi, P., Suzic, B., & Zhao, Z. (2015). Challenges emerging from future cloud application scenarios. Procedia Computer Science, 68, 227-237. https://doi.org/10.1016/j.procs.2015.09.238 [details] Martin, P., Grosso, P., Magagna, B., Schentz, H., Chen, Y., Hardisty, A., Los, W., Jeffery, K., de Laat, C., & Zhao, Z. (2015). Open Information Linking for Environmental Research Infrastructures. In Proceedings, 11th IEEE International Conference on eScience: 31 August-4 September 2015, Munich, Germany (pp. 513-520). IEEE Computer Society. https://doi.org/10.1109/eScience.2015.66 [details]
Martin, P., Grosso, P., Magagna, B., Schentz, H., Chen, Y., Hardisty, A., Los, W., Jeffery, K., de Laat, C., & Zhao, Z. (2015). Open Information Linking for Environmental Research Infrastructures. In Proceedings, 11th IEEE International Conference on eScience: 31 August-4 September 2015, Munich, Germany (pp. 513-520). IEEE Computer Society. https://doi.org/10.1109/eScience.2015.66 [details] Zhao, Z., Martin, P., Grosso, P., Los, W., de Laat, C., Jeffrey, K., Hardisty, A., Vermeulen, A., Castelli, D., Legré, Y., & Kutsch, W. (2015). Reference Model Guided System Design and Implementation for Interoperable Environmental Research Infrastructures. In Proceedings, 11th IEEE International Conference on eScience: 31 August-4 September 2015, Munich, Germany (pp. 551-556). IEEE Computer Society. https://doi.org/10.1109/eScience.2015.41 [details]
Zhao, Z., Martin, P., Grosso, P., Los, W., de Laat, C., Jeffrey, K., Hardisty, A., Vermeulen, A., Castelli, D., Legré, Y., & Kutsch, W. (2015). Reference Model Guided System Design and Implementation for Interoperable Environmental Research Infrastructures. In Proceedings, 11th IEEE International Conference on eScience: 31 August-4 September 2015, Munich, Germany (pp. 551-556). IEEE Computer Society. https://doi.org/10.1109/eScience.2015.41 [details] Zhao, Z., Martin, P., Wang, J., Taal, A., Jones, A., Taylor, I., Stankovski, V., Garcia Vega, I., Suciu, G., Ulisses, A., & de Laat, C. (2015). Developing and operating time critical applications in clouds: the state of the art and the SWITCH approach. Procedia Computer Science, 68, 17-28. https://doi.org/10.1016/j.procs.2015.09.220 [details]
Zhao, Z., Martin, P., Wang, J., Taal, A., Jones, A., Taylor, I., Stankovski, V., Garcia Vega, I., Suciu, G., Ulisses, A., & de Laat, C. (2015). Developing and operating time critical applications in clouds: the state of the art and the SWITCH approach. Procedia Computer Science, 68, 17-28. https://doi.org/10.1016/j.procs.2015.09.220 [details] Zhu, H., van der Veldt, K., Zhao, Z., Grosso, P., Pavlov, D., Soeurt, J., Liao, X., & de Laat, C. (2015). A semantic enhanced Power Budget Calculator for distributed computing using IEEE 802.3az. Cluster Computing, 18(1), 61-77. https://doi.org/10.1007/s10586-014-0395-7 [details]
Zhu, H., van der Veldt, K., Zhao, Z., Grosso, P., Pavlov, D., Soeurt, J., Liao, X., & de Laat, C. (2015). A semantic enhanced Power Budget Calculator for distributed computing using IEEE 802.3az. Cluster Computing, 18(1), 61-77. https://doi.org/10.1007/s10586-014-0395-7 [details] Ghijsen, M., van der Ham, J., Grosso, P., Dumitru, C., Zhu, H., Zhao, Z., & de Laat, C. (2013). A semantic-web approach for modeling computing infrastructures. Computers & Electrical Engineering, 39(8), 2553-2565. https://doi.org/10.1016/j.compeleceng.2013.08.011 [details]
Ghijsen, M., van der Ham, J., Grosso, P., Dumitru, C., Zhu, H., Zhao, Z., & de Laat, C. (2013). A semantic-web approach for modeling computing infrastructures. Computers & Electrical Engineering, 39(8), 2553-2565. https://doi.org/10.1016/j.compeleceng.2013.08.011 [details] Zhu, H., van der Veldt, K., Grosso, P., Zhao, Z., Liao, X., & de Laat, C. (2012). Energy-aware semantic modeling in large scale infrastructures. In Work in Progress Sessions (WiP): the 2012 IEEE International Conference on Internet of Things (iThings 2012), the 2012 IEEE International Conference on Cyber, Physical and Social Computing (CPSCom 2012), the 2012 IEEE International Conference on Green Computing and Communications (GreenCom 2012): 20-23 November 2012, Besançon, France (pp. 11-14). IEEE. [details]
Zhu, H., van der Veldt, K., Grosso, P., Zhao, Z., Liao, X., & de Laat, C. (2012). Energy-aware semantic modeling in large scale infrastructures. In Work in Progress Sessions (WiP): the 2012 IEEE International Conference on Internet of Things (iThings 2012), the 2012 IEEE International Conference on Cyber, Physical and Social Computing (CPSCom 2012), the 2012 IEEE International Conference on Green Computing and Communications (GreenCom 2012): 20-23 November 2012, Besançon, France (pp. 11-14). IEEE. [details] Li, N., Qi, Y., Xin, R., & Zhao, Z. (2023). Ocean Data Quality Assessment through Outlier Detection-enhanced Active Learning. In J. He, T. Palpanas, X. Hu, A. Cuzzocrea, D. Dou, D. Slezak, W. Wang, A. Gruca, JC.-W. Lin, & R. Agrawal (Eds.), 2023 IEEE International Conference on Big Data: December 15-18, 2023, Sorrento, Italy : proceedings (pp. 102-107). IEEE. https://doi.org/10.48550/arXiv.2312.10817, https://doi.org/10.1109/BigData59044.2023.10386969 [details]
Li, N., Qi, Y., Xin, R., & Zhao, Z. (2023). Ocean Data Quality Assessment through Outlier Detection-enhanced Active Learning. In J. He, T. Palpanas, X. Hu, A. Cuzzocrea, D. Dou, D. Slezak, W. Wang, A. Gruca, JC.-W. Lin, & R. Agrawal (Eds.), 2023 IEEE International Conference on Big Data: December 15-18, 2023, Sorrento, Italy : proceedings (pp. 102-107). IEEE. https://doi.org/10.48550/arXiv.2312.10817, https://doi.org/10.1109/BigData59044.2023.10386969 [details] Rong, C., & Zhao, Z. (2021). Welcome to the new Journal of Cloud Computing by Springer. Journal of Cloud Computing, 10, Article 49. https://doi.org/10.1186/s13677-021-00263-5 [details]
Rong, C., & Zhao, Z. (2021). Welcome to the new Journal of Cloud Computing by Springer. Journal of Cloud Computing, 10, Article 49. https://doi.org/10.1186/s13677-021-00263-5 [details] Zhou, H., Hu, Y., Ouyang, X., Su, J., Koulouzis, S., de Laat, C., & Zhao, Z. (2019). CloudsStorm: A framework for seamlessly programming and controlling virtual infrastructure functions during the DevOps lifecycle of cloud applications. Software, practice & experience, 49(10), 1421-1447. https://doi.org/10.1002/spe.2741 [details]
Zhou, H., Hu, Y., Ouyang, X., Su, J., Koulouzis, S., de Laat, C., & Zhao, Z. (2019). CloudsStorm: A framework for seamlessly programming and controlling virtual infrastructure functions during the DevOps lifecycle of cloud applications. Software, practice & experience, 49(10), 1421-1447. https://doi.org/10.1002/spe.2741 [details] Taherizadeh, S., Jones, A., Taylor, I., Zhao, Z., Martin, P., & Stankovski, V. (2016). Runtime Network-level Monitoring Framework in the Adaptation of Distributed Time-critical Cloud Applications. In H. Arabnia, H. Ishii, K. Joe, & H. Nishikawa (Eds.), PDPTA 2016: proceedings of the 2016 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada, USA, July 25-28, 2016 (pp. 78-83). CSREA Press. https://doi.org/10.5281/zenodo.53869 [details]
Taherizadeh, S., Jones, A., Taylor, I., Zhao, Z., Martin, P., & Stankovski, V. (2016). Runtime Network-level Monitoring Framework in the Adaptation of Distributed Time-critical Cloud Applications. In H. Arabnia, H. Ishii, K. Joe, & H. Nishikawa (Eds.), PDPTA 2016: proceedings of the 2016 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada, USA, July 25-28, 2016 (pp. 78-83). CSREA Press. https://doi.org/10.5281/zenodo.53869 [details] Zhao, Z., Martin, P., de Laat, C., Jeffery, K., Jones, A., Taylor, I., Hardisty, A., Atkinson, M., Zuiderwijk-van Eijk, A., Yin, Y., & Chen, Y. (2016). Time critical requirements and technical considerations for advanced support environments for data-intensive research. Paper presented at International workshop on Interoperable infrastructures for interdisciplinary big data sciences, Porto, Portugal. https://doi.org/10.5281/zenodo.204756 [details]
Zhao, Z., Martin, P., de Laat, C., Jeffery, K., Jones, A., Taylor, I., Hardisty, A., Atkinson, M., Zuiderwijk-van Eijk, A., Yin, Y., & Chen, Y. (2016). Time critical requirements and technical considerations for advanced support environments for data-intensive research. Paper presented at International workshop on Interoperable infrastructures for interdisciplinary big data sciences, Porto, Portugal. https://doi.org/10.5281/zenodo.204756 [details] Zhou, H., Martin, P., Su, J., de Laat, C., & Zhao, Z. (2016). A Flexible Inter-locale Virtual Cloud For Nearly Real-time Big Data Applications. Paper presented at International workshop on Interoperable infrastructures for interdisciplinary big data sciences, Porto, Portugal. https://doi.org/10.5281/zenodo.204774 [details]
Zhou, H., Martin, P., Su, J., de Laat, C., & Zhao, Z. (2016). A Flexible Inter-locale Virtual Cloud For Nearly Real-time Big Data Applications. Paper presented at International workshop on Interoperable infrastructures for interdisciplinary big data sciences, Porto, Portugal. https://doi.org/10.5281/zenodo.204774 [details] Li, N. (2025). Data quality control and research asset discovery for open science. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Li, N. (2025). Data quality control and research asset discovery for open science. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Wang, Y. (2025). From computational notebooks to collaborative workflows: A decentralized virtual research environment solution. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Wang, Y. (2025). From computational notebooks to collaborative workflows: A decentralized virtual research environment solution. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Hu, Y. (2019). Resource scheduling for quality-critical applications on cloud infrastructure. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Hu, Y. (2019). Resource scheduling for quality-critical applications on cloud infrastructure. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Zhou, H. (2019). Seamless infrastructure programming and control for quality-critical cloud applications. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Zhou, H. (2019). Seamless infrastructure programming and control for quality-critical cloud applications. [Thesis, fully internal, Universiteit van Amsterdam]. [details]